
A Heat Method for Generalized Signed Distance

Algorithm Nonbounding loops and 
discontinuous distance

For different diffusion times, our method effectively interpolates between the “linear” prior used by the 
pseudonormal test (as t→0) and the “harmonic” prior used by generalized winding numbers (as t→∞).

Unlike the gradient of an unsigned distance function (top), the unit vector field we compute for 
signed distance might not be integrated by any continuous function (bottom). In such scenarios, we 
can instead compute a piecewise continuous SDF (right).

Left: Methods based on convex optimization yield more accurate distances, but compute only 
unsigned distance. Right: Using our method as a warm start, we can “sharpen” distance while 
preserving the inside-outside classification. Here we start with a large diffusion time (t =100h² ) 
to visually emphasize the effect.

Our method can be applied in any dimension to any spatial discretization, including polygon meshes, point clouds, 
digital surfaces, tetrahedral meshes, and regular grids.

GWN/PSR completes surfaces with saddle-shaped harmonic patches that exhibit poor normal 
continuity with the observed geometry (across many contour values). Our method directly 
incorporates normal information, providing more plausible reconstruction even for large holes.
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The signed heat method computes a 
well-behaved signed distance function (SDF), 
even for imperfect or incomplete input geometry.
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Faithful surface reconstruction

non-orientable domains

By extracting level sets of generalized signed distance, we can convert broken, noisy, and nonmanifold input geometry (far left) 
into closed, regular, manifold surfaces and evenly-spaced offset surfaces.
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Our algorithm works out-of-the-box on non-manifold, non-orientable, and self-intersecting domains; and fails gracefully in the presence of significant topological, geometric, or 
orientation errors in the source geometry. Errors ε in geodesic distance are displayed relative to the exact polyhedral SDF of a finely sampled version of the original curve.
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Theory

Discretization
In Step 1, we use the edge-based Crouzeix-Raviart basis 
functions, which makes it straightforward to discretize 
curve sources, and enables a purely intrinsic formulation. 
We identify tangent vectors with complex numbers. 
In Step 3, we use basis functions at vertices, so we obtain 
distance values at vertices.
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Optional extensions

soft level set constraintssimultaneous fitting of multiple level sets
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aligns with the vector obtained via parallel transport along a minimal
As diffusion time t→0, the diffused vector at each point

at the closest point           . 
[Berline et al. 1992, Theorem 2.30].
geodesic  of the normal 

Since parallel transport along geodesics preserves tangency, this vector
will be tangent to  — and since traveling along  is the quickest way 
back to  it is parallel to the unsigned distance gradient. Since we 

We can hence 
to obtain an approximation of the signed

transport oriented normals, we get the correct sign.
normalize 
distance gradient. 


