

A HEAT METHOD FOR GENERALIZED SIGNED DISTANCE

Nicole Feng, Keenan Crane

Carnegie Mellon University

Signed distance functions (SDFs) are essential

Challenge: SDFs from messy, real-world input

"broken" geometry

Signed Heat Method (SHM)

Signed Heat Method (SHM)

Input: (possibly broken) oriented curves on a surface,

or surfaces in 3D space

Signed Heat Method (SHM)

Input: (possibly broken) oriented curves on a surface,

Output: signed distance approximation

Applies to all discretizations & dimensions

robust to broken geometry non-manifold holes self-intersections inconsistent orientation

input

STEP 1: diffuse normals

input

STEP 1: STEP 2: diffuse normals normalize vectors

input

Unsigned Heat Method (UHM) for geodesic distance

[Crane, Weischedel, Wardetzky 2013]

Unsigned Heat Method (UHM) for geodesic distance [Crane, Weischedel, Wardetzky 2013]

Vector Heat Method (VHM) for parallel transport [Sharp, Soliman, Crane 2019]

[Crane et al. 2013]

Unsigned Heat Method (UHM) for geodesic distance [Crane, Weischedel, Wardetzky 2013] [Crane et al. 2013] unsigned distance only [Sharp et al. 2019] ∇u Vector Heat Method (VHM) for parallel transport doesn't compute signed distance Sharp, Soliman, Crano 20101

Past work in robust distance

Pseudonormal distance \rightarrow not robust Bærentzen 2005

Displaced Signed Distance → pseudonormal-like [Brunton & Rmaileh 2021]

Signing unsigned distance → Euclidean only [Mullen et al. 2010]

Smooth Signed Distance → not true distance [Calakli & Taubin 2011]

"Heal" gaps with morphological fusing --> over-regularized [Xu & Barbič 2014]

Neural "distance" functions → not true distance [Park et al. 2019; Atzmon and Lipman 2019; Gropp et al. 2020]

Past work in robust distance

Pseudonormal distance → not robust

[Bærentzen 2005]

Displaced Signed Distance → pseudonormal-like

[Brunton & Rmaileh 2021]

[Mullen et al. 2010]

Signing unsigned dis

[Mullen et al. 2010]

Smooth Signed Distai

[Calakli & Taubin 201]

Still no go-to method for robust signed distance...

runton & aileh 2021]

[Calakli & Taubin 2011]

"Heal" gaps with morphological fusing → over-regularized [Xu & Barbič 2014]

Neural "distance" functions → not true distance

[Park et al. 2019; Atzmon and Lipman 2019; Gropp et al. 2020]

[Xu & Barbič 2014]

Many unsigned geodesic distance algorithms...

fast sweeping

fast marching & wave-based

[Kimmel & Sethian 1998]

[Gurumoorthy & Rangarajan 2009]

window-based methods

[Mitchell et al. 1987]

... and many more...

graph-based

[Lanthier 1999]

closest-point queries

[Sawhney 2021]

[Sharp & Jacobson 2022]

diffusion-based

[Crane et al. 2013]

virtual source propagation

[Bommes & Kobbelt 2007]

Signing unsigned distance doesn't work

ALGORITHM

Parallel transport on surfaces

Parallel transport on surfaces

Parallel transport on surfaces

Parallel transport can be computed using diffusion

Theorem. Vector heat diffusion yields parallel transport along shortest geodesics, as diffusion time $\rightarrow 0$.

N. Berline, E. Getzler, M. Vergne, Heat Kernels and Dirac Operators (1992)

We can normalize and integrate the diffused vectors to obtain signed distance.

Key insights

- (1) Diffused normals will be parallel to the gradient of signed distance;
- (2) Normalizing and integrating these vectors recovers an accurate SDF.

Step 1: Vector diffusion

Step 1: Vector diffusion

(1) Integrate the vector heat equation for a short time t.

vector heat equation

$$\frac{\mathrm{d}}{\mathrm{d}t}X_t = \Delta^{\nabla}X_t, \quad t > 0,$$

$$X_0 = N\mu_{\Omega}$$

(2) Normalizing the resulting vector field X_t :

$$Y_t \leftarrow X_t / ||X_t||$$

(3) Look for the function ϕ whose gradient is as close as possible to Y_t :

$$\min_{\phi: M \to \mathbb{R}} \int_{M} \|\nabla \phi - Y_{t}\|_{2}^{2}$$

(3) Look for the function ϕ whose gradient is as close as possible to Y_t :

$$\min_{\phi: M \to \mathbb{R}} \int_{M} \|\nabla \phi - Y_{t}\|_{2}^{2} \longrightarrow \frac{\Delta \phi}{\partial n} = n \cdot Y_{t} \quad \text{on } M$$

(3) Look for the function ϕ whose gradient is as close as possible to Y_t :

$$\min_{\phi: M \to \mathbb{R}} \int_{M} \|\nabla \phi - Y_{t}\|_{2}^{2} \longrightarrow \frac{\Delta \phi}{\partial n} = n \cdot Y_{t} \quad \text{on } M$$

DISCRETIZATION

Time discretization

STEP 1: vector diffusion

vector heat equation

$$\frac{\mathrm{d}}{\mathrm{d}t} X_t = \Delta^{\nabla} X_t$$
$$X_0 = N \mu_{\Omega}$$

Time discretization

STEP 1: vector diffusion

vector heat equation

Spatial discretization on triangle meshes

STEP 1: vector diffusion

Tangent Vector Fields on Triangulated Surfaces-An Edge-Based Approach
A. Djerbetian & M. Ben-Chen (2016)

A Simple Discretization of the Vector Dirichlet Energy
O. Stein, M. Wardetzky, A. Jacobson, E. Grinspun (2020)

Normalize vectors

STEP 1: vector diffusion

vector heat equation

$$\frac{\mathrm{d}}{\mathrm{d}t}X_t = \Delta^{\nabla}X_t$$

$$X_0 = N\mu_{\Omega}$$

$$(\mathrm{id} - t\Delta^{\nabla})X_t = X_0$$

$$flow for t > 0$$

$$(M + tL^{V})X = X_0$$

sparse linear system

STEP 2: normalization

Average edge-based vectors onto faces, and normalize.

Integrate vector field

STEP 1: vector diffusion

vector heat equation

$$\frac{\mathrm{d}}{\mathrm{d}t}X_t = \Delta^{\nabla}X_t$$

$$X_0 = N\mu_{\Omega}$$

$$(\mathrm{id} - t\Delta^{\nabla})X_t = X_0$$

$$flow for t > 0$$

$$(M + tL^{\nabla})X = X_0$$

sparse linear system

STEP 2: normalization

Average edge-based vectors onto faces, and normalize.

STEP 3: integration

Poisson equation

$$\Delta \phi = \nabla \cdot Y_t \quad \text{on } M$$

$$\frac{\partial \phi}{\partial n} = n \cdot Y_t \quad \text{on } \partial M$$

Integrate vector field

STEP 1: vector diffusion

vector heat equation

$$\frac{\mathrm{d}}{\mathrm{d}t}X_t = \Delta^{\nabla}X_t$$

$$X_0 = N\mu_{\Omega}$$

$$(\mathrm{id} - t\Delta^{\nabla})X_t = X_0$$

$$flow for t > 0$$

$$(M + tL^{\nabla})X = X_0$$

sparse linear system

STEP 2: normalization

Average edge-based vectors onto faces, and normalize.

STEP 3: integration

Poisson equation

$$\Delta \phi = \nabla \cdot Y_t \quad \text{on } M$$

$$\frac{\partial \phi}{\partial n} = n \cdot Y_t \quad \text{on } \partial M$$

cotan Laplacian

$$C\phi = b$$

discrete divergence

sparse linear system

Algorithm summary

STEP 1: vector diffusion

vector heat equation

$$\frac{\mathrm{d}}{\mathrm{d}t}X_t = \Delta^{\nabla}X_t$$

$$X_0 = N\mu_{\Omega}$$

$$(\mathrm{id} - t\Delta^{\nabla})X_t = X_0$$

$$flow for t > 0$$

$$(M + tL^{\nabla})X = X_0$$

sparse linear system

STEP 2: normalization

Average edge-based vectors onto faces, and normalize.

STEP 3: integration

Poisson equation

$$\Delta \phi = \nabla \cdot Y_t \quad \text{on } M$$

$$\frac{\partial \phi}{\partial n} = n \cdot Y_t \quad \text{on } \partial M$$

cotan Laplacian

$$C\phi = 1$$

discrete divergence

sparse linear system

Algorithm summary

STEP 1: vector diffusion

vector heat equation

$$\frac{\mathrm{d}}{\mathrm{d}t}X_t = \Delta^{\nabla}X_t$$

$$X_0 = N\mu_{\Omega}$$

$$(\mathrm{id} - t\Delta^{\nabla})X_t = X_0$$

$$flow for t > 0$$

$$(M + tL^{\nabla})X = X_0$$

sparse linear system

STEP 2: normalization

Average edge-based vectors onto faces, and normalize.

STEP 3: integration

Poisson equation

$$\Delta \phi = \nabla \cdot Y_t \quad \text{on } M$$

$$\frac{\partial \phi}{\partial n} = n \cdot Y_t \quad \text{on } \partial M$$

cotan Laplacian

$$C\phi = 1$$

discrete divergence

sparse linear system

Beyond triangle meshes...

Our method applies to any data structure

Can mix signed & unsigned distance

Domains with boundary

Domains with boundary

unsigned heat method [Crane et al. 2013]

RESULTS

input

Volumetric grid domains

Volumetric grid domains

Generalized morphological operations

Generalized morphological operations

Robustness to defects in the source geometry

Robustness to defects in the source geometry

Robustness to errors in the domain geometry

Non-orientable surfaces

input

generalized signed distance

OPTIONAL EXTENSIONS

Preserving level sets

Step 3:
$$\min_{\phi} \|\nabla \phi - Y_t\|_2^2 \rightarrow C\phi = b$$

Preserving level sets

Step 3:
$$\min_{\phi} \|\nabla \phi - Y_t\|_2^2 \rightarrow C\phi = b$$

possible slight deviation

Preserving level sets

Simply constrain ϕ to be constant along curve!

Step 3:
$$\min_{\substack{\phi \\ \text{s.t. } \phi \text{ constant along (each) curve}}} |\nabla \phi - Y_t||_2^2 \rightarrow \begin{bmatrix} C & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} \phi \\ \mu \end{bmatrix} = \begin{bmatrix} b \\ 0 \end{bmatrix}$$

without constraints

with constraints

$$\phi(\gamma_0) = \phi(\gamma_1) = \cdots = \phi(\gamma_m)$$

Match multiple level sets

Generalizing signed distance to nonbounding curves

input

signed distance gradient

Could filter out non-bounding curves:

Feng et al. 2023, "Winding Numbers on Discrete Surfaces"

Instead...

Piecewise continuous distance

$$\min_{\phi: M \to \mathbb{R}} \int_{M} \|\nabla \phi - Y_{t}\|_{2}^{2}$$

Piecewise continuous distance

Edit Step 3:
$$\min_{\phi: M \to \mathbb{R}} \int_{M} \|\nabla \phi - Y_{t}\|_{2}^{2}$$

Allow ϕ to jump where Y is non-integrable, but otherwise minimize discontinuity

$$\min_{\phi} \sum_{ij \in \text{edges}} [\text{weight}_{\text{integrability}}] [\text{jump in } \phi \text{ across } ij]$$

s.t. Y is integrated within each face

integrate Y, allowing for discontinuity

Piecewise continuous distance

Edit Step 3:
$$\min_{\phi: M \to \mathbb{R}} \int_{M} \|\nabla \phi - Y_{t}\|_{2}^{2}$$

Allow ϕ to jump where Y is non-integrable, but otherwise minimize discontinuity

$$\min_{\phi} \sum_{ij \in \text{edges}} [\text{weight}_{\text{integrability}}] [\text{jump in } \phi \text{ across } ij]$$

s.t. Y is integrated within each face

integrate Y, allowing for discontinuity

sparse linear program (|F|DOFs)

Piecewise continuous distance for nonbounding curves

standard integration (L^2)

Piecewise continuous distance for nonbounding curves

standard integration (L^2)

piecewise continuous integration (L^1)

"Sharpening" distance

Unsigned geodesic distance as convex optimization

[Dantzig 1963, Belyaev & Fayolle 2020]

"Sharpening" distance

Unsigned geodesic distance as convex optimization

[Dantzig 1963, Belyaev & Fayolle 2020]

unsigned distance only

"Sharpening" distance

after sharpening

solve time: 0.51s (using $t = 100h^2$ for illustration)

additional time: 0.66s

Other spatial discretizations

Other spatial discretizations

polygon meshes

point clouds

Other spatial discretizations

polygon meshes

All you need is a Laplacian!

A. Bunge, P. Herholz, M. Kazhdan, M. Botsch. 2020. Polygon Laplacian Made Simple.

N. Sharp, K. Crane. 2020.

A Laplacian for Nonmanifold Triangle Meshes.

D. Coeurjolly, J. Lachaud. 2022.

A Simple Discrete Calculus for Digital Surfaces.

point clouds

EVALUATION

Evaluation: closed curves on flat domains

Evaluation: closed curves on flat domains

Evaluation: closed curves on curved domains

Evaluation: closed curves on curved domains

Better SDFs than repairing then computing distance

Better SDFs than repairing then computing distance

Better SDFs than repairing then computing distance

Inside/outside classification

ours winding number

Inside/outside classification

Inside/outside classification

Inside/outside classification

(alternate contouring)

CONCLUSION

• Signed heat method generalizes distance in several ways ("broken" geometry, non-orientable source and domain geometry)

- Signed heat method generalizes distance in several ways ("broken" geometry, non-orientable source and domain geometry)
- Algorithm is incredibly simple (just two sparse linear systems)

- Signed heat method generalizes distance in several ways ("broken" geometry, non-orientable source and domain geometry)
- Algorithm is incredibly simple (just two sparse linear systems)
- Robust to errors in both the source and domain (holes, noise, intersections, non-manifold, inconsistent orientations)

- Signed heat method generalizes distance in several ways ("broken" geometry, non-orientable source and domain geometry)
- Algorithm is incredibly simple (just two sparse linear systems)
- Robust to errors in both the source and domain (holes, noise, intersections, non-manifold, inconsistent orientations)
- Applies to many spatial discretizations in 2D and 3D
 (triangle meshes, polygon meshes, point clouds, digital surfaces, tet meshes, regular grids, ...)

- Signed heat method generalizes distance in several ways ("broken" geometry, non-orientable source and domain geometry)
- Algorithm is incredibly simple (just two sparse linear systems)
- Robust to errors in both the source and domain (holes, noise, intersections, non-manifold, inconsistent orientations)
- Applies to many spatial discretizations in 2D and 3D (triangle meshes, polygon meshes, point clouds, digital surfaces, tet meshes, regular grids, ...)
- Good at surface reconstruction

Can diffuse line fields, cross fields, ...

Can diffuse line fields, cross fields, ... recover distance and orientation?

Boundary Integration"

Can diffuse line fields, cross fields, ...

... recover distance and orientation?

Recovers orientation:

"A Linear Method to Consistently Orient Normals of a 3D Point Cloud"

[Alliez et al. 2007]

"Voronoi-based Variational Reconstruction of Unoriented Point Sets"

[Hou et al. 2022]

"Iterative poisson surface reconstruction (iPSR) for unoriented points"

[Xu et al. 2023]

"Globally Consistent Normal Orientation for Point Clouds by Regularizing the Winding-Number Field"

THANKS!