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Signed distance functions (SDFs) are essential
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Challenge: SDFs from messy, real-world input

“broken” geometry



Signed Heat Method (SHM)




Signed Heat Method (SHM)

Input: (possibly broken) oriented curves on a surface,

or surfaces in 3D space ’)
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Signed Heat Method (SHM)

Input: (possibly broken) oriented curves on a surface,
or surfaces in 3D space

Output: signed distance approximation

4



different data structures

polygon Frpp— digital _
meshes . ‘lfiﬁ;f*f; = surfaces REHL
) .,IT[_I_‘JM f g J - -
robust to broken geometry
non-manifold

inconsistent
. orientation

Applies to all discretizations & dimensions

tet meshes

sighed &
unsigned
distance

non-bounding
curves




Basic idea




Basic idea

Input



Basic idea

STEP :
diffuse normals




Basic idea

tors

STEP 2:
normalize vec

STEP :
diffuse normals

Input



Basic idea

STEP : STEP 2: STEP 3:
diffuse normals  normalize vectors integrate

generalized
signed distance



Past work: heat methods in geometry processing



Past work: heat methods in geometry processing

Unsigned Heat Method (UHM) for geodesic distance
[Crane, Weischedel, Wardetzky 2013]

[Crane et al. 2013]}
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Past work: heat methods in geometry processing

Unsigned Heat Method (UHM) for geodesic distance
[Crane, Weischedel, Wardetzky 2013]

[Crane et al. 2013]}
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Past work: heat methods in geometry processing

Unsigned Heat Method (UHM) for geodesic distance
[Crane, Weischedel, Wardetzky 2013]

[Crane et al. 2013]}
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[Sharp et al. 2019]

Vector Heat Method (VHM) for parallel transport
[Sharp, Soliman, Crane 2019]



Past work: heat methods in geometry processing

Unsigned Heat Method (UHM) for geodesic distance
[Crane, Weischedel, Wardetzky 2013]

[Crane et al. 2013]}

[Sharp et al. 2019]



Past work in robust distance
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Pseudonormal distance — not robust
[Baerentzen 2005]

Displaced Signed Distance — pseudonormal-like /m N
[Brunton & Rmaileh 2021] o JL N >

[Mullen et al. 2010]
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. . . . Brunton &
Signing unsigned distance — Euclidean only & /X ™ = RL.;:Z;);@N]

Mullen et al. 2010 A
[ | A2

Smooth Signed Distance — not true distance

[Calakli & Taubin 2011] [Calakli & Taubin 2011]

“Heal” gaps with morphological fusing — over-regularized
[Xu & Barbic 2014} [Xu & Barbic 2014]

Neural “distance” functions — not true distance
[Park et al. 2019; Atzmon and Lipman 2019; Gropp et al. 2020}
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Past work in robust distance

' —
Pseudonormal distance — not robust 'Mullen et al. 2010]

[Baerentzen 2005] .. /, <. & <, 7 <
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[Brunton & Rmaileh 2021}

Signing unsigned dis

hileh 2021]
[Mullen et al. 2010]

Still no go-to method for
robust signed distance...

Smooth Signed Distali
[Calakli & Taubin 2017 _

[Calakli & Taubin 2011]

“Heal” gaps with morphological fusing — over-regularized
[Xu & Barbic 2014] [Xu & Barbi¢ 2014]

Neural “distance” functions — not true distance
[Park et al. 2019; Atzmon and Lipman 2019; Gropp et al. 2020}
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Many unsigned geodesic distance algorithms...

fast sweeping  fast marching & wave-based window-based methods
[Mitchell et al. 1987]
|Surazhsky et al. 2005]
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...and many
more...

graph-based closest-point queries  diffusion-based  virtual source propagation
[Lanthier 1999] [Sawhney 2021] [Crane et al. 2013] |Bommes & Kobbelt 2007 |

[Sharp & Jacobson 2022]
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Signing unsigned distance doesn't work

sighed unsigned distance ground truth



ALGORITHM



Parallel transport along shortest geodesics



Parallel transport along shortest geodesics




Parallel transport along shortest geodesics



Parallel transport along shortest geodesics



Parallel transport on surfaces




Parallel transport on surfaces




Parallel transport on surfaces




Parallel transport can be computed using diffusion

Theorem. Vector heat diffusion yields parallel transport

along shortest geodesics, as diffusion time — 0.

N. Berline, E. Getzler, M. Vergne, Heat Kernels and Dirac Operators (1992)
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Key insight #1




Key insight #1




Key insight #1




Key insight #1

Diffused vectors are parallel to
the gradient of distance.
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Key insight #1

Diffused vectors are parallel to
the gradient of signed distance.
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Key insight #2

We can normalize and integrate the diffused vectors to obtain signed distance.
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Key insight #2




Key insight #2




Key insight #2




Key insight #2



Key insights

(1) Diffused normals will be parallel to the gradient of signed distance;

(2) Normalizing and integrating these vectors recovers an accurate SDF.

V(x);fl@(-x)
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Step 1: Vector diffusion



Step 1: Vector diffusion

(1) Integrate the vector heat equation for a short time 7.

vector heat equation

d
— X, =AX,, t>0
dt 4 [

X() — NﬂQ

STEP I:
diffuse normals
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Step 2: Normalize vectors

(2) Normalizing the resulting vector field X, :

Y; Xt/”Xt”

STEP I: STEP 2:
diffuse normals normalize
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Step 2: Normalize vectors

(3) Look for the function ¢ whose gradient is as close as possible to ¥, :

min Vo — Y, ||5
Jmin | (V6 - Vi
STEP I: STEP 2:

diffuse normals normalize
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Step 2: Normalize vectors

(3) Look for the function ¢ whose gradient is as close as possible to ¥, :

Ap
99
on

VY, onM

s[4k ——
¢: M—R JMm

n'Yt on oM

STEP I: STEP 2:
diffuse normals normalize
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Step 2: Normalize vectors

(3) Look for the function ¢ whose gradient is as close as possible to ¥, :

Ap=V-Y, onM

min [ V4=Vl ——s
¢: M—R Jm

STEP I: STEP 2: STEP 3:
diffuse normals normalize integrate
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DISCRETIZATION



Time discretization

STEP 1:
vector diffusion

vector heat equation

d V
—X; = A X
3 t

Xo = Npg
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Time discretization

STEP 1:
vector diffusion

vector heat equation

d \%
_X — A X ow fort >
dt ! : P Gd =t X, = X,

XO‘ — N ﬂQ The Vector Heat Method

N. Sharp, Y. Soliman, K. Crane (2020)
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Spatial discretization on triangle meshes

STEP 1:
vector diffusion

mass  connection initial normal
matrix  Laplacian vectors

(M + tLY)X = X,

sparse linear system

(id — tA") X, = X,

Crouziex-Raviart basis functions

Tangent Vector Fields on Triangulated Surfaces-An Edge-Based Approach
A. Djerbetian & M. Ben-Chen (2016)

A Simple Discretization of the Vector Dirichlet Energy
O. Stein, M. Wardetzky, A. Jacobson, E. Grinspun (2020)
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Normalize vectors

STEP 2:
normalization

Average edge-based vectors
onto faces, and normalize.
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Integrate vector field

37

STEP 3:
Integration

Poisson equation
At;{) =V. YI‘ on M

7,
—¢=n-Yt on dM
on



Integrate vector field

37

STEP 3:
Integration

Poisson equation
&t;b =V. Yi‘ on M

cotan discrete
Laplacian C¢ — b divergence

sparse linear system



Algorithm summary

STEP 1:
vector diffusion

vector heat equation

d
—X,=A"X
dt t L

Xﬂ :N)'JQ

'

(id — tA")X; = X,
flow fort > 0

(M . tLV)X = Xo

STEP 2:
normalization

Average edge-based vectors
onto faces, and normalize.

38

cotan
Laplacian

sparse linear system

STEP 3:
Integration

Poisson equation
&t;b =V. Yi‘ on M

C _ b discrete
¢ — divergence



Algorithm summary

STEP 1:
vector diffusion

vector heat equation

d
—X,=A"X
dt t L

Xﬂ :N)'JQ

'

(id — tA")X; = X,
flow fort > 0

(M . tLV)X = Xo

STEP 2:
normalization

Average edge-based vectors
onto faces, and normalize.

38

cotan
Laplacian

sparse linear system

STEP 3:
Integration

Poisson equation
&t;b =V. Yi‘ on M

C _ b discrete
¢ — divergence



Beyond triangle meshes...
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Our method applies to any data structure

poly, }g]on tet meshes triangle
mesnes meshes

point clouds

grids
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Can mix signed & unsigned distance




Domains with boundary
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Domains with boundary

unsigned heat method [Crane et al. 2013]
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e o

without heuristic with heuristic
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Offset surfaces in 3D
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Offset surfaces in 3D
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Offset surfaces in 3D

+0.4-offset

offset

+0.2-

offset

0-

Input
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Offset surfaces in 3D

46



Volumetric grid domains

regular

grid
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Volumetric grid domains

offset surfaces

generalized
signed
distance

regular

grid
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Generalized morphological operations
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Generalized morphological operations

solve o
positive offset
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Robustness to defects in the source geometry
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Robustness to defects in the source geometry

holey domain

imperfect curve
selection
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Robustness to errors in the source geometry




Robustness to errors in the source geometry

ground truth
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Robustness to errors in the source geometry

ground truth

geometric errors | =l

e ‘= L? error

952



Robustness to errors in the source geometry

ground truth

orientation errors | ———————————l

<
red = flipped orientation
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Robustness to errors in the source geometry

ground truth @' | topological errors | =————————

AN r e AT = 4 sl - [ : ———
e S 2\, Y A - = 2 A=Ay

774 =~
red = flipped orientation



Robustness to errors in the domain geometry

more non-manifold large holes




Non-orientable surfaces
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OPTIONAL EXTENSIONS



Preserving level sets

Step 3: mqgn |V —Yi|l5 — Co=b



Preserving level sets

Step 3: m¢in |V - Yi|l5 — Co=b

possible slight deviation

959



Preserving level sets

Simply constrain ¢ to be constant along curve!

Step 3: mg.gn |V — YtHg . |C ATl |¢] B |bl
s.t. ¢ constant along (each) curve A 0 H 0
without constraints with constraints
Yo A
}/m—l
Ym ¥\ |

d(y0) = ¢(y1) =+ = ¢(ym)
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Match multiple level sets

constant per

no constraints
component
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Generalizing signed distance to nonbounding curves

Input

p



Gradient of sighed distance may not be easily integrable



Gradient of signed distance may not be easily integrable

-+—

|

signed distance
gradient
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Gradient of signed distance may not be easily integrable

B

ideal signed distance
solution gradient

63



Gradient of signed distance may not be easily integrable
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ideal sighed distance
solution gradient
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Gradient of signed distance may not be easily integrable

Could filter out
non-bounding

curves:

Feng et al. 2023, "Winding
Numbers on Discrete Surfaces”

——— L b il .
= B - . ;

ideal sighed distance
solution gradient

ponbounding loops

Instead...
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Piecewise continuous distance

Edit Step 3:

64



Piecewise continuous distance

Edit Step 3:

min f IVé - Y, 2
M

¢: M—>R

Allow ¢ to jump where Y is non-integrable,
but otherwise minimize discontinuity

min Z [Weightimegmbﬂity] |jump in ¢ across ij]
¢ ijcedges

s.t. Y is integrated within each face

integrate Y, allowing for discontinuity
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Piecewise continuous distance

Edit Step 3:

min f IVé - Y, 2
M

¢: M—>R

Allow ¢ to jump where Y is non-integrable,
but otherwise minimize discontinuity

min Z [Weightimegmbﬂiw] |jump in ¢ across ij]
¢ ijcedges

s.t. Y is integrated within each face

integrate Y, allowing for discontinuity

sparse linear program (| F'| DOFs)
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Piecewise continuous distance for nonbounding curves

standard
integration (L)
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Piecewise continuous distance for nonbounding curves

standard piecewise continuous
integration (L) integration (L)
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“Sharpening” distance

Unsigned geodesic distance as convex optimization
[Dantzig 1963, Belyaev & Fayolle 2020]

67



“Sharpening” distance

Unsigned geodesic distance as convex optimization
[Dantzig 1963, Belyaev & Fayolle 2020]

67



“Sharpening” distance

after sharpening

*a e | N 4
. ...ﬂ"i'-..
Ny

solve time: 0.51s additional time: 0.66s
(using t = 100A? for illustration)
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Other spatial discretizations



polygon meshes

Other spatial discretizations

69
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Other spatial discretizations

polygon meshes

All you need is a Laplacian!

A. Bunge, P. Herholz, M. Kazhdan, M. Botsch. 2020.
Polygon Laplacian Made Simple.

i
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B
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X
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CLLARL
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N. Sharp, K. Crane. 2020.
A Laplacian for Nonmanifold Triangle Meshes.

AT

\

D. Coeurjolly, J. Lachaud. 2022.

A Simple Discrete Calculus for Digital Surfaces.
69



EVALUATION



Evaluation: closed curves on flat domains
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Evaluation: closed curves on flat domains

N> VAVAWA
VA A
vty
HOCOKINEK

good triangulation

UHM [Crane et al. 2013] ADMM-BF [Belyaev & Fayolle 2020]
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Evaluation: closed curves on curved domains

Solve time (unbroken curves)

10° » i
. i
4
#

10* 10°
number of mesh vertices

Ours FMM UHM ADMM-BF
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Evaluation: closed curves on curved domains

linear convergence

Solve time (unbroken curves) Error (unbroken curves)

1071

-
o) t '
o 17 gt ,

- B

1 e

LQ error

103 | 1072

10* 10” 1077 1077 107" 10° 10"
number of mesh vertices mean edge length

Ours FMM UHM ADMM-BF
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Better SDFs than repairing then computing distance



Better SDFs than repairing then computing distance

original

Sl . :
Aet al. 2023,

“Winding Numbers on
Discrete Surfaces”




Better SDFs than repairing then computing distance

original

Aet al. 2023,
“Winding Numbers on
Discrete Surfaces”




Better inside/outside than winding numbers

Inside/outside classification

40%

30%

220

examples o

percent of meshes

12%

10%

o | |
100% 90% 30% <50%

Percent area classified correctly

ours winding number
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Better inside/outside than winding numbers

Inside/outside classification

40%

30%

220

examples o

percent of meshes

10%

0% I = :
100% 907 8044 <50% |

Percent area classified corredihy

ours winding number
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Better inside/outside than winding numbers

220
examples

Inside/outside classification

40% 40%
0 O
: >
£ 30% c 30%
ke =
£ 20% £ 20%
> 10% ~ 10
0% - — % 0%
100% 90% 8074 100% 20% sl |
Percent area classified corred Percent area classified correcty .
ours winding number winding number

(alternate contouring)
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Better inside/outside than winding numbers

Inside/outside classification

407 407
220 é 30% E 30%
5 IS
examples - £ 207
Alternative S
method has ~3x
' 0%
more SDF error, [« 90% 8070 g 100% 90% 0%
t ake s ~10x Ion ger Percent area classified j Percent area classified correctiy
ours winding number winding number

(alternate contouring)
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Better reconstruction than winding numbers
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Better reconstruction than winding numbers
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Better reconstruction than winding numbers
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Better reconstruction than winding numbers

generalized signed distance 4

offset
surfaces

zero set

o
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CONCLUSION



Takeaways



Takeaways

e Signed heat method generalizes distance in several ways
(“broken” geometry, non-orientable source and domain geometry)

79



Takeaways

e Signed heat method generalizes distance in several ways
(“broken” geometry, non-orientable source and domain geometry)
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(just two sparse linear systems)
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(just two sparse linear systems)

e Robust to errors in both the source and domain
(holes, noise, intersections, non-manifold, inconsistent orientations)
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Takeaways

Signed heat method generalizes distance in several ways
(“broken” geometry, non-orientable source and domain geometry)

Algorithm is incredibly simple

(just two sparse linear systems)

Robust to errors in both the source and domain
(holes, noise, intersections, non-manifold, inconsistent orientations)

Applies to many spatial discretizations in 2D and 3D

(triangle meshes, polygon meshes, point clouds, digital surfaces, tet meshes, regular grids, ...)
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Takeaways

Signed heat method generalizes distance in several ways
(“broken” geometry, non-orientable source and domain geometry)

Algorithm is incredibly simple

(just two sparse linear systems)

Robust to errors in both the source and domain
(holes, noise, intersections, non-manifold, inconsistent orientations)

Applies to many spatial discretizations in 2D and 3D

(triangle meshes, polygon meshes, point clouds, digital surfaces, tet meshes, regular grids, ...)

Good at surface reconstruction

79



Fun future direction: line field diffusion



Fun future direction: line field diffusion

Can diffuse line fields, cross fields, ...
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Fun future direction: line field diffusion

Can diffuse line fields, cross fields, ... ... recover distance and orientation?

.-____.._-'-"-"'ﬂ—

. ££115€
metry diff" N /

orientation =
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Fun future direction: line field diffusion

Can diffuse line fields, cross fields, ...

geometry
without

[Liu et al. 2024]
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“Consistent Point Orientation
for Manifold Surfaces via
Boundary Integration”

[Hou et al. 2022]

. recover distance and orientation?
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[Gotsman & Hormann 2024]
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“A Linear Method to Consistently Orient
Normals of a 3D Point Cloud™

“Iterative poisson surface reconstruction
(iPSR) for unoriented points”

Recovers orientation:

L

E e

“Voronoi-based Variational
Reconstruction of
Unoriented Point Sets”

[

“Globally Consistent Normal Orientation
for Point Clouds by Regularizing the
Winding-Number Field”



THANKS!



