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Fig. 1. Progression of drawings. (a) One of 100 image prompts in our dataset. (b) Apparent ridges rendered from the geometry. (c) Progression of density map
of tracings binned into temporal quintiles. (d) Progression of density map of registered freehand drawings binned into temporal quintiles. All drawings of the
prompt are superimposed. Note the spatio-temporal similarities between tracing and freehand drawing. Contours are drawn early and tone details later. Fossil
model by Digital Atlas of Ancient Life on Sketchfab (CC0 1.0).

Non-photorealistic rendering (NPR) and image processing algorithms are
widely assumed as a proxy for drawing. However, this assumption is not
well assessed due to the difficulty in collecting and registering freehand
drawings. Alternatively, tracings are easier to collect and register, but there
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is no quantitative evaluation of tracing as a proxy for freehand drawing. In
this paper, we compare tracing, freehand drawing, and computer-generated
drawing approximation (CGDA) to understand their similarities and differ-
ences. We collected a dataset of 1,498 tracings and freehand drawings by
110 participants for 100 image prompts. Our drawings are registered to the
prompts and include vector-based timestamped strokes collected via stylus
input. Comparing tracing and freehand drawing, we found a high degree
of similarity in stroke placement and types of strokes used over time. We
show that tracing can serve as a viable proxy for freehand drawing because
of similar correlations between spatio-temporal stroke features and labeled
stroke types. Comparing hand-drawn content and current CGDA output, we
found that 60% of drawn pixels corresponded to computer-generated pixels
on average. The overlap tended to be commonly drawn content, but people’s
artistic choices and temporal tendencies remained largely uncaptured. We
present an initial analysis to inform new CGDA algorithms and drawing
applications, and provide the dataset for use by the community.

CCS Concepts: • Applied computing → Arts and humanities; • Human-
centered computing → User studies; • Computing methodologies →
Non-photorealistic rendering; Perception.
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1 INTRODUCTION
The computer graphics and image processing communities have
long been interested in developing methods that resemble free-
hand drawing. These computer-generated drawing approximations
(CGDA) are often used as a proxy for hand drawings. For example,
several recent deep learning-based applications [Isola et al. 2017;
Li et al. 2018; Su et al. 2018] have relied exclusively on CGDA for
training data. However, the extent to which current CGDA results
actually resemble real drawings remains unclear. In particular, most
CGDA methods only approximate the end result of drawing, ne-
glecting the drawing process which includes stroke and temporal
information. In this paper, we compare current CGDAmethods with
both freehand drawing and tracing, in order to better model the
process and content of drawing and inform new algorithms.
Tracing is a form of hand drawing commonly used in art and

design that has not been compared with freehand drawing or CGDA
output. Tracings are easier to obtain than freehand drawings and are
registered to image prompts by definition. Like freehand drawing,
tracing can also provide temporal information and stroke demarca-
tion. Comparisons of tracing to freehand drawing have been long
discussed in the art community [Jamieson 2019], but there is a lack
of quantitative analysis. Therefore, we consider tracing as a proxy
for freehand drawing and also compare it to CGDA, thus enabling
new paradigms for data collection and algorithm evaluation.
This study compares tracing, freehand drawing, and CGDA out-

put based on a collection of tracings and freehand drawings. Our
data have vector and temporal information and are registered to
image prompts. We observed that in both freehand drawing and
tracing, the types of strokes drawn over time are similar; common
contours are drawn early and tone details occur later in the drawing
process (Fig. 1). We found that in both forms of drawing, similar
correlations exist between stroke features and time as well as be-
tween stroke features and drawing intention. This suggests that
tracing can serve as a viable proxy for freehand drawing and jus-
tifies this efficient method of drawing data collection. In addition,
we evaluated current CGDA methods by comparing their output to
both freehand drawing and tracing and found a 60% overlap. This
reveals aspects of CGDA methods that require more attention, such
as the drawing process and different types of strokes. We expect
our dataset and analysis to be useful for many applications, includ-
ing data-driven CGDA, stroke type classification, drawing process
simulation, sketch-based modeling, and sketch beautification.
This paper makes the following contributions:

• A dataset of 1,498 tracings and freehand drawings of 100
image prompts by 110 participants, with temporal, vector,
and pressure information that are registered to the prompts.

• A comparison between tracing and freehand drawing through
a spatio-temporal analysis, in which we demonstrate their
similarities in stroke placement and drawing progression.

• A comparison of CGDA results with hand-drawn data, in
which we show that current CGDA methods capture about
60% of pixels drawn and suggest areas for improvement.

2 RELATED WORK

2.1 A Taxonomy of Hand-Drawn Datasets
There has been enormous work on datasets and algorithms for vari-
ous drawing applications. As shown in Table 1, large-scale datasets
like TU-Berlin [Eitz et al. 2012], Sketchy [Sangkloy et al. 2016],
and QuickDraw [Ha and Eck 2018] are intended for sketch recogni-
tion and image retrieval. The use of text prompts in these datasets
leaves room for participants’ interpretations and encourages sym-
bolic sketches. While valuable for machine learning applications,
many of these sketches do not reflect the complexity of observa-
tional drawing. In addition to freehand sketches, tracings, which
are directly registered to the prompt, have been collected to study
image segmentation and contour extraction. Tracing datasets like
BSDS500 [Arbeláez et al. 2011] and PhotoSketch [Li et al. 2019] illus-
trate people’s perception of edges and contours, which is essential
to creating a good drawing [Suwa and Tversky 1997].
More related to our motivation are the drawing datasets used

to understand how artists and designers draw, including Prince-
ton [Cole et al. 2008], Portrait [Berger et al. 2013], OpenSketch [Grya-
ditskaya et al. 2019], and GMU [Yan et al. 2020]. The Portrait and
OpenSketch datasets include temporal information to analyze the
process of portrait drawing and technical drafting. The OpenSketch
and GMU datasets include contours and additional types of strokes
that reveal people’s drawing intention. Because it is hard to col-
lect high-quality data, these datasets are relatively small in scope
(portrait photos or diffuse renderings) and size (one or two dozen
prompts and usually at most ten artists per prompt). Therefore, it
remains necessary to create a dataset of timestamped representa-
tional drawings with a wider variety of prompts, artists, and stroke
types in order to further understand how people trace and draw.

2.2 Computer-Generated Drawing Approximation
The computer graphics community has been interested in creating
NPR techniques to render various artistic styles. Different algo-
rithms for generating lines have been proposed in order to imitate
human-drawn strokes. Suggestive contours [DeCarlo et al. 2003] ex-
tend true contours of shapes; ridges and valleys [Ohtake et al. 2004]
and apparent ridges [Judd et al. 2007] depict salient surface features;
neural contours incorporate multiple line extractors [Liu et al. 2020];
and hatching strokes [Kalogerakis et al. 2012; Praun et al. 2001] con-
vey material, tone, and form. These NPR techniques take a 3D model
as input, examine differential properties such as surface curvatures,
and produce lines in the form of static bitmaps. In the image domain,
edge detection can generate lines at the boundary of high-contrast
regions. Various image processing techniques produce edge maps to
imitate drawing, such as the extended difference-of-Gaussians [Win-
nemöller et al. 2012], holistically-nested edge detection [Xie and Tu
2015], and contour extraction from images [Li et al. 2019].
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Table 1. A taxonomy of drawing datasets. Our dataset includes both tracings and registered freehand drawings composed of vector-based timestamped
strokes. The wide variety of prompts, participants, and stroke types presented in our dataset allows us to study general tendencies in drawing.

Dataset Temporal
data Registration Shading &

texture Prompts People
/prompt Tracings Freehand

drawings
TU-Berlin [Eitz et al. 2012] ✓ ✗ ✗ 250 ∼80 0 20k

Sketchy [Sangkloy et al. 2016] ✓ ✗ ✗ 125 ∼600 0 75k
QuickDraw [Ha and Eck 2018] ✓ ✗ ✗ 345 ∼145k 0 50m
BSDS500 [Arbeláez et al. 2011] ✗ ✓ ✗ 500 4–9 2,696 0
PhotoSketch [Li et al. 2019] ✓ ✓ ✗ 1,000 5 5,000 0
Princeton [Cole et al. 2008] ✗ ✓ ✗ 12 1–11 208 208
Portrait [Berger et al. 2013] ✓ ✓ ✓ 24 7 0 672

OpenSketch [Gryaditskaya et al. 2019] ✓ ✓ ✓ 12 7–15 0 417
GMU [Yan et al. 2020] ✗ ✓ ✓ 141 3–5 526 281
SpeedTracer (ours) ✓ ✓ ✓ 100 11–21 1,210 288

Recently, CGDA techniques have become widely used to generate
training data for sketching applications based on deep learning. For
example, many use convolutional neural networks (CNN) to learn
the inverse mapping from NPR to shape, such as reconstructing
normal maps [Su et al. 2018] and dense 3D point clouds [Lun et al.
2017], predicting parameters for procedural modeling [Huang et al.
2017], and creating caricature face models [Han et al. 2017] and
other freeform surfaces [Delanoy et al. 2018; Li et al. 2018] from
drawings. While CGDA is commonly used as a proxy for drawing,
this assumption lacks evaluation. In particular, although someCGDA
techniques simulate the process of observational drawing [Liu et al.
2014], most of them neglect the order in which people draw and
artists’ drawing intention. Our work aims to understand the process
of tracing and freehand drawing, which could inform new methods
that better emulate drawing.

2.3 Tracing vs. Freehand Drawing
Tracing is a common tool and practice in art and design. Art stu-
dents learn to observe proportions by looking at an object through
a glass viewfinder with grids and drawing over it [Edwards 2012].
Architects also trace and selectively reuse lines for communicat-
ing and iterating design ideas [Johannessen and Van Leeuwen
2017]. Drawing interfaces such as ShadowDraw [Lee et al. 2011],
DrawAFriend [Limpaecher et al. 2013], ShadowModel [Fan et al.
2013], and EZ-Sketching [Su et al. 2014] leverage a tracing metaphor
to help users create more realistically proportioned drawings and
models. Although tracing is easier to produce than freehand draw-
ing, the art community has long discussed the distinction between
these two forms. While tracing helps artists understand structure
and perspective, it can also discourage detailed analysis of the work
and become a crutch [Jamieson 2019]. Quantitative comparisons
between tracing and freehand drawing mainly take place in psy-
chology, focusing on eye-hand interactions, brain activities, and
drawing skills using simple shapes [Gowen and Miall 2006, 2007;
Ostrofsky et al. 2012]. However, they are not readily applicable to
observational drawing and computer graphics.
This paper aims to advance understanding of how people trace

and draw by collecting timestamped drawings and including a wider
variety of prompts, participants, and stroke types. Our dataset allows

the study of general consistency and variation between tracing and
freehand drawing. Our detailed analysis provides insight into the
drawing process and informs future drawing applications.

3 DATA COLLECTION

3.1 Study Design
3.1.1 Prompt selection. Past studies have used text prompts to col-
lect sketches for recognition and image retrieval. Text prompts are
less specific and encourage varying interpretations. As a result,
sketches are often symbolic or caricatured. To encourage more real-
ism and to support registration, we used visual prompts in a similar
manner to the analysis of portrait drawing [Berger et al. 2013]. The
image prompt was visible throughout a drawing session, so that the
artist could observe and make various drawing decisions.
We included a total of 100 photorealistic images from various

sources, with wide variations in appearance (unicolor diffuse vs. tex-
tured and specular) and content (single objects vs. complex scenes).
We chose diverse shapes with abundant geometric and visual fea-
tures rather than simple uniform shapes. Specifically, there were
33 rendered images from publicly available 3D models with appear-
ance assets, 21 images from photometric stereo datasets [Shi et al.
2016; Toler-Franklin et al. 2007; Xiong et al. 2015; Zhang 2012] with
associated normal maps, 30 images used for raster pencil drawing
production [Lu et al. 2012], 9 images of 3D-printed objects from
multiple viewpoints [Slavcheva et al. 2018], and 7 photographs of
sculptures. The image content ranged from clay animals to furniture
pieces to landscapes. Overall, this collection covers a wide range of
shapes and scenes with diverse reflectance properties.

3.1.2 Constraints. Many previous studies instructed participants to
draw only contour strokes. However, drawings typically employ a
wider range of strokes including those that represent tone, shadows,
textures, and those accentuating important details. In order to cap-
ture these different types of strokes, we did not limit the types that
participants could draw. On the other hand, we found time limits
used in previous studies helpful for encouraging participants to
prioritize strokes and for collecting normalized data. We imposed a
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time limit of two minutes based on observations from a pilot study—
most people could complete the overall content within two minutes
and still had time to add details such as shading and texture.

3.2 Implementation
3.2.1 Drawing interface. We implemented SpeedTracer, a web-based
drawing interface using Vue.js [You 2020]. Our drawing interface is
composed of a square canvas with an image prompt and an optional
blank canvas with user options on the sides of the webpage. We
use square canvases with images scaled and padded to 800×800 as
this is close to the prompts’ original resolutions. Participants were
instructed to trace over the image or draw on the blank canvas using
a digital stylus. The interface provides the ability to select stroke
width, color, and opacity, undo or redo a stroke, and clear the canvas.
Stroke width is determined by multiplying user-specified width and
pen pressure, allowing varying widths and tapering. Participants
could change stroke color for artistic purposes and better tracing
visibility. Strokes were stored in vector format in a database with
timestamps, pressure, and appearance properties. Each participant
traced or drew a prompt only once but could trace or draw multiple
prompts. The prompts were ordered such that each prompt would
be completed by a similar number of participants.

3.2.2 Participants. A total of 110 participants contributed to our
dataset. Among them, 85 were professional illustrators, experienced
students from art and architecture schools, students enrolled in a
college drawing class, or amateur drawing enthusiasts. To enrich the
dataset with easier-to-collect crowdsourced data used in machine
learning research, the remaining 25 participants were recruited
from Amazon Mechanical Turk for the tracing task. 39 participants
contributed tracings using a 28-inch Microsoft Surface Studio with
the Surface Pen in our lab. Others used their own tablets with stylus
support such as an iPad with the Apple Pencil and Wacom tablets.
All freehand drawings were collected remotely.

In all, there were 46 males, 62 females, and two who identified as
non-binary gender. Their ages ranged from 18 to 61 years, with an
average age of 27. Of these, 59 had two or more years of art training,
20 had one year, and 31 had none. Participants reported an average
of four years of art training with the most experienced reporting
38 years. Each participant contributed 1–50 tracings or freehand
drawings, with an average of 14. 13 participants were left-handed.
Most participants were volunteers and not compensated. We paid
each of the 25 turkers $0.50 for 10 tracings, and each of the seven
artists recruited from mihuashi.com $7.68 for 15 freehand drawings.

3.2.3 Dataset. We excluded 187 tracings mostly by turkers because
they included only an outline or content unrelated to the prompt.We
also excluded all 15 freehand drawings by one participant who had
no art training and drew only partial outlines. The resulting dataset
contains a total of 1,210 tracings from 96 participants and 288 free-
hand drawings from 19 participants. Five artists contributed both
tracings and freehand drawings. We collected fewer freehand draw-
ings because they required more skill. We did not collect freehand
drawings for 30 prompts of complex scenes because they would be
hard to register. Each of the remaining 70 prompts of single objects
has about 12 tracings and 4 freehand drawings.

Fig. 2. Registration of freehand drawings using a composite of collected
tracings as a guide. (a) Image prompt. (b) Composite of tracings. (c) Sample
freehand drawings. (d) Same freehand drawings after registration.

3.3 Drawing Registration
In order to compare freehand drawings to tracings and CGDA re-
sults, we need to first register them to the image prompt. We use
tracings to aid in registration by maximizing the correlation be-
tween each freehand drawing and a composite of all tracings of the
same prompt over a displacement field. We implemented a coarse-to-
fine optimization framework using ImageRegistrationMethod()
in the Insight Segmentation and Registration Toolkit (ITK) [Kitware
2020]. The first step was to initialize a reasonable displacement field
at full resolution. Our automatic initialization used a global affine
transformation, followed by B-spline transformations at three scales
from an image pyramid. Freehand drawings that included many
background strokes occasionally led to a bad initialization. To ad-
dress these cases, we manually labeled 18 to 42 fiducials in both the
freehand drawing and the image prompt, and initialized the displace-
ment field by fitting a thin plate splinemodel. The second step was to
maximize the correlation between the freehand drawing and the trac-
ing composite using gradient descent to obtain the optimal displace-
ment field. We used the following parameters: 256×256 resolution,
SetMetricAsANTSNeighborhoodCorrelation(radius=16), and
SetOptimizerAsGradientDescent(learningRate=1, numberOf-
Iterations=300, estimateLearningRate=EachIteration).
Overall, the registered drawings share contours at nearby pixel loca-
tions (Fig. 2), which allows us to perform a spatio-temporal analysis
on tracings and freehand drawings simultaneously.

4 DRAWING ANALYSIS
To compare tracing and freehand drawing, we examine similarity in
content drawn, stroke usage, and progression of drawing over time.
We then evaluate CGDA methods by finding the overlap between
their output and both tracing and freehand drawing. Our analysis
includes 70 prompts of single objects with 851 tracings and 288
freehand drawings.
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4.1 Do People Draw Similar Content?
Our analysis begins with an exploration of the content and the way
people trace and draw. We rasterized collected tracings and regis-
tered freehand drawings to enable pixelwise comparisons across
drawings. We also leveraged temporal information to understand
the order pixels are covered during the drawing process.

4.1.1 What people draw in common. Inspired by previous analy-
sis [Cole et al. 2008], we explore common content within tracings,
within freehand drawings, and between tracings and freehand draw-
ings. We computed a histogram of pairwise distances between draw-
ings for both tracing and registered freehand drawing (Fig. 3c). For
every pixel in each drawing rasterized using one pixel-wide strokes,
we recorded its closest chessboard distance in pixels to every other
drawing of the same prompt. For both forms of drawing across all
prompts, over 50% of the distances are close to a pixel in another
drawing (within four pixels) and about 15% of the distances are far
from any other drawing (more than 20 pixels).

To demonstrate similarities between tracing and freehand draw-
ing, we first generated density maps and quantified their overlap
(Fig. 3a). We superimposed all tracings of the same image prompt
to create a density map for tracing, and similarly with all registered
freehand drawings of the same prompt. To compensate for imperfect
registration, we dilated the raster drawings for two iterations before
superimposition so two strokes four pixels apart can overlap. We
thresholded the density map using half the number of participants
to obtain a binary commonly drawn region (CDR). We computed
a histogram of pairwise distances between CDR pixels in tracing
and freehand drawing, and found that over 80% of the distances are
within four pixels.

Findings: In both tracing and freehand drawing, over half of the
pixels are common content. People also draw similar common con-
tent between tracing and freehand drawing, and we observed that
this mostly occurs at silhouettes and interior contours of objects.

4.1.2 When people draw common pixels. Drawing analysis should
encompass both the end result and the drawing process. After ex-
ploring what people draw in common, we examine when they draw
the common content. We used the interpolated timestamps for each
pixel to analyze how many pixels people draw over time. For each
drawing, we equally divided the temporal span into 25 bins and
counted the number of all pixels drawn within each temporal bin.
We also counted the number of CDR pixels based on their average
timestamp for each prompt (Fig. 3d). We computed the Pearson
correlation coefficient with a p-value between the number of pixels
and the temporal bin index to understand how it changes over time.
All analyses in this paper use a significance level of p<0.05.

We observed that the number of all pixels drawn in tracing in-
creases over time in 18% of the prompts, decreases over time in
13%, and has no significant correlation with time in 69%. Similarly,
we observed 20%, 14%, and 66% in freehand drawing. In contrast,
the number of CDR pixels in tracing increases over time in 0% of
the prompts, decreases over time in 93%, and has no significant
correlation with time in 7%. Similarly, we observed 0%, 66%, and
34% in freehand drawing.
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Fig. 3. Similarities between tracing and freehand drawing. (a) Density maps
of two sample prompts. (b) Commonly drawn regions (CDR) colored by the
average time at which each pixel is drawn. (c) Histograms of pairwise closest
distances between pixels for all prompts. (d) Histograms of the number of
CDR pixels over time for all prompts. Note the decreasing trend.

Findings: In both tracing and freehand drawing, the number of
all pixels drawn is mostly uncorrelated with time. However, people
tended to draw more common pixels early, and this tendency is
stronger in tracing.

4.1.3 Where people draw over time. After exploring when the com-
mon content is drawn, we examine changes in focus over time as
it relates to spatial locality. For CDR pixels of each prompt, we
recorded their (x,y) coordinates relative to the top left corner and
their distance to the barycenter of the drawing (distc). We then com-
puted the Pearson correlation coefficient with a p-value between
these properties and time (Fig. 4a). We found that among all prompts
90% in tracing have a significantly negative correlation between
distc and time, and 84% in freehand drawing have a significantly
positive correlation between y and time.

To understand this tendency at a finer level, we divided the tem-
poral span of each drawing into ten equal bins and took snapshots of
the drawing in progress. We then computed the convex hull area of
each snapshot relative to that of the final drawing (Fig. 4b). The dif-
ference in the convex hull area between tracing and freehand draw-
ing is significant in all temporal bins except for the first and the last,
as suggested by a one-way analysis of variance (ANOVA) [De Veaux
et al. 2020]. People tended to cover larger areas earlier in tracing,
which reflects their behavior of drawing outside-to-inside.

Findings: People preferred finishing the entire outline first in trac-
ing, as opposed to decomposing the prompt into parts in freehand
drawing. This difference is more obvious when the prompt con-
tains facial features catching artists’ attention (Fig. 3b). A one way
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Fig. 4. Stroke placement over time. (a) Percentage of prompts with correla-
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barycenter of the drawing. SigPos: significant positive correlation, SigNeg:
significant negative correlation, Insig: insignificant correlation. (b) Convex
hull area over time. In tracing, a larger area is covered earlier due to a
stronger tendency to draw outside-to-inside than in freehand drawing.

ANOVA shows that the temporal difference of commonly drawn con-
tent between tracing and freehand drawing is significantly smaller
if the prompt does not contain any facial features (p = 0.0099).

4.2 Do People Use Similar Strokes?
While a raster representation shows the consistency across draw-
ings, information about individual strokes is lost. To understand
whether people use similar strokes in tracing and freehand draw-
ing, we analyze the distribution of vector stroke statistics, stroke
ordering, and how stroke features change over time.

4.2.1 Distribution of basic statistics. We computed four statistics
for each tracing and each registered freehand drawing: number of
strokes, pauses as percentage of total drawing duration, number
of pixels, and accumulated stroke lengths. We also computed two
statistics for each stroke: arc length and speed. Fig. 5 shows their
distributions in tracing and freehand drawing. In tracing, the number
of strokes has a median of 61, pause duration 49%, number of pixels
8382, accumulated stroke lengths 13105, stroke length 96, and stroke
speed 323. The corresponding statistics in freehand drawing are 78,
59%, 9246, 15769, 140, and 483. Since each prompt has a comparable
number of collected drawings, these distributions can reflect general
trends in tracing and freehand drawing.
Findings: We observed more flexible drawing behaviors in free-

hand drawing than tracing. In freehand drawing, people tended to
draw more strokes and overdrawing is more common. People also
tended to pause more possibly because they needed more time to
consider the next part and its proportions when working with a
blank canvas. Stroke length is more evenly distributed in freehand
drawing than in tracing. This agrees with our observation—when
tracing, people tended to draw long strokes at silhouettes followed
by much shorter shading strokes, whereas people tended to use
many connecting strokes at silhouettes in freehand drawing.

4.2.2 Comparing stroke ordering. To examine trends in the draw-
ing process, we compare stroke ordering in tracing and freehand
drawing by evaluating a list of heuristics used to assign order to
vector strokes. Specifically, finding a Hamiltonian path in a graph
of strokes can generate a plausible drawing order by minimizing an
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energy function using heuristics such as simplicity, proximity, and
collinearity [Fu et al. 2011]. The energy function captures unary
and binary costs and is defined as

E = w
n−1∑
i=0

cind(li )θ (i) +
n−2∑
i=0

ctra(li , li+1),

where li is the ith stroke after ordering. cind(l) = ηcstr(l) + ccir(l)
captures the complexity of an individual stroke, where cstr(l) =
1 − straightness captures the deviation from a straight line and
ccir(l) = std(κ) captures the deviation from a constant-curvature
circle. θ (i) = 1 − i/n is used to enforce the heuristic of simplicity,
i.e., simple strokes should be drawn first. ctra(li , lj ) = wpcpro(li , lj )+
(1 −wp)ccol(li , lj ) captures the transition cost from stroke li to lj ,
where the proximity term cpro(li , lj ) is the distance between the
closest points on two strokes, and the collinearity term ccol(li , lj ) is
the positive angular difference between two endpoint tangents. We
used the exact definitions and weightsw = 1,η = 0.1,wp = 1/9 by
Fu et al., and we refer the reader to their paper for more details.
To understand if these heuristics play a similar role in tracing

and freehand drawing, we performed a Monte Carlo sampling of
all possible orderings of common strokes (defined in Section 4.4)
in each drawing. For each ordering, we computed each term of the
energy function using strokes before registration. A heuristic is
considered important if the energy function takes a low value at
the ground-truth ordering compared to other random orderings. As
shown in the inset table, we computed a score for each heuristic
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and their combination as the percent of random orderings whose
energy was above that of the ground-truth ordering.
Findings: Overall, these heuristics characterize stroke ordering

better in freehand drawing than tracing. Proximity is most im-
portant for both, suggesting that temporally neighboring strokes
tend to be spatially close. Collinearity comes second and is less

Tracing Freehand
cpro(li , lj ) 97.89% 99.81%
ccol(li , lj ) 90.55% 97.62%
E 81.35% 93.04%
cstr(l) 44.16% 66.68%
ccir(l) 31.42% 51.33%

important in tracings, which
could be due to single long
strokes in tracings versus
shorter connecting strokes
in freehand drawings. Sim-
plicity does not characterize
stroke ordering effectively.

4.2.3 Stroke features over time. To further understand similarities
between strokes used in tracing and freehand drawing, we examine
how stroke features evolved throughout the drawing process. We
extracted features [Mahoney 2018] from each stroke before registra-
tion and found their correlation to the time the strokewas completed.
Stroke features included arc length, distance between two endpoints
(dist), duration, speed, average pressure, stroke width, opacity, the
number of points, screen-space angle of the vector connecting the
two endpoints, average distance to image center, bounding box
coordinates, positions of two endpoints, curvature approximated
by nine uniformly sampled points on the stroke, and straightness
defined as dist/length. For every drawing, we computed the Pearson
correlation coefficient between each feature and time with a p-value.
We excluded drawings in which the correlation coefficient could not
be computed, e.g., missing pressure or strokes of a fixed width. For
each feature, we computed the percentage of drawings with a signif-
icantly positive, significantly negative, or insignificant correlation.
We reported all correlation results to avoid data dredging.

As shown in Fig. 6, in both tracing and freehand drawing, opacity,
duration, dist, and length tended to decrease over time, whereas
width and speed tended to increase over time. An inconsistency was
pressure, as it mainly decreased over time only in tracing—people
tended to apply more pressure when they started tracing contours
than drawing them on a blank canvas.

Findings: In both tracing and freehand drawing, early strokes such
as silhouettes tended to be long and drawn slowly using opaque
colors. In contrast, late strokes such as hatching tended to be short
and drawn quickly using translucent colors and wider strokes.

4.3 How Do Drawings Develop Over Time?
Changes in stroke features over time indicate that people might
employ multiple types of strokes with different drawing intention.
Therefore, it is important to understand if drawing intention evolves
similarly in tracing and freehand drawing.

4.3.1 Labeling drawing intention. The first author manually labeled
10,832 strokes in 130 tracings and 3,400 strokes in 42 freehand draw-
ings for 10 prompts. All strokes fall into two main categories: geo-
metric contours and tone details. We further divided geometric
contours into silhouettes (foreground-background separation), inte-
rior contours (depth discontinuity), and ridges and valleys (normal
discontinuity). We also divided tone details into hatching (strokes
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Fig. 6. Percentage of drawings with a significantly positive, significantly
negative, or insignificant correlation between stroke features and time.
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Fig. 7. Distribution of stroke types over time. Note the percentage of silhou-
ettes at the beginning and hatching strokes towards the end.

for shading), stipple (dots for shading), and texture (color difference).
Fig. 7 shows the percentage of strokes for each type over time.

Findings: Overall, we observed that drawings progressed similarly
in tracing and freehand drawing. Silhouettes were dominant at the
beginning and hatching strokes became more prominent towards
the end. Interior contours and ridges and valleys appeared mainly in
the middle of the drawing process. Stipple and texture strokes were
drawn infrequently. People drew more hatching in tracing than
in freehand drawing, possibly because freehand drawing required
more skill and people had less time to depict shading.

4.3.2 Building stroke classifiers. Trends in how stroke features and
labels change over time suggest the possibility of stroke classifica-
tion. We built random forest classifiers to predict stroke type using
features from Section 4.2 with 80% data for training and 20% for test-
ing. We first performed robust standardization on the features using
the 5th and 95th percentiles of each feature. During training, we
used four-fold cross-validation to select optimal hyperparameters.
We split data in three different ways—splitting prompts, drawings,
or strokes. Table 2 summarizes the ten-time average test accuracy
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Fig. 8. Sample results of two stroke classifiers both predicting geometric contours (orange) and tone details (blue). The first classifier used 80% tracings as
training data and 20% tracings as test data. The second classifier used all tracings as training data and all freehand drawings as test data. (a) Labeled tracings
used in training for both classifiers. (b) Labeled test tracings for the first classifier. (c) Predicted labels by the first classifier. (d) Labeled test freehand drawings
for the second classifier. (e) Predicted labels by the second classifier, which shows models learned from tracings can be transferred to freehand drawings.

Table 2. Average test accuracy of random forest classifiers for predicting
stroke labels. The classifiers were trained using two labels and six labels,
and with different splits of data.

Tracing Freehand drawing
2 labels 6 labels 2 labels 6 labels

Split prompts 75.57% 59.49% 84.24% 48.96%
Split drawings 80.16% 66.67% 78.30% 53.52%
Split strokes 90.11% 82.99% 89.06% 69.40%

using two (contours, details) or six (silhouettes, interior contours,
ridges and valleys, hatching, stipple, texture) labels.

The classifiers distinguished geometric contours from tone details
with an accuracy of about 80% on splits of prompts and drawings,
and an accuracy of about 90% on splits of strokes. The most im-
portant features for classification were time, length, duration, speed,
and straightness. Fig. 8 shows sample training data, ground truth for
testing, and predictions using the classifier with 80% drawings as
training data. In another experiment, we trained a classifier using
all tracings and tested it on freehand drawings, which achieved an
average accuracy of 76.32% over all prompts.

Findings: A stroke’s temporal features can effectively characterize
drawing intention in both tracing and freehand drawing. Further-
more, the high accuracy of classifying strokes in a freehand drawing
with a classifier trained on tracings suggests that models learned
from tracings can be transferred to freehand drawings.

4.4 How Much Do CGDA and Drawing Overlap?
After comparing tracing and freehand drawing, we revisit current
methods for computer-generated drawing approximation as they
are commonly used as a proxy for hand drawings. CGDA methods
fall into two classes: NPR methods that assume an underlying 3D
representation, and image processing methods that operate directly
on images. We compare both tracings and freehand drawings to
CGDA results to quantitatively establish whether their use is a
reasonable approximation to either form of drawing.

4.4.1 Precision and recall. Inspired by the analysis approach of
Cole et al. [2008], we start with a pixelwise comparison between
rasterized hand-drawn data and CGDA output. We computed preci-
sion and recall, where precision is the fraction of pixels in a CGDA
output that fall in a neighborhood of any pixel in the drawing. We
rasterized each stroke in the drawing and considered it to be cap-
tured by CGDA output if over half of its pixels fall in a neighborhood
of any pixel in the CGDA image. We then measured recall as the
fraction of pixels on such strokes captured by the CGDA output.
We generated one-pixel wide CGDA output using five widely used
methods: suggestive contours (SC) [DeCarlo et al. 2003], ridges and
valleys (RV) [Ohtake et al. 2004], and apparent ridges (AR) [Judd
et al. 2007] for 33 prompts rendered from 3D models as well as
Canny edges [Canny 1986] and holistically-nested edges (HED) [Xie
and Tu 2015] for all 70 prompts (Fig. 10). We chose thresholds for
the algorithms such that the number of output pixels was closest
to the median number of pixels in all tracings and freehand draw-
ings of the same prompt. We used a 9×9 neighborhood based on
observations from the pairwise distances and a hybrid raster-vector
representation to compensate for imperfect registration.
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Fig. 9. Precision and recall of NPR and image processing output compared with tracing and freehand drawing. (a) Average precision and recall for five types of
computer-generated output. (b) Average precision and recall on images with (gray) and without background. (c) Average precision and recall on images with
(gray) and without texture. Obj: object-space NPR output, i.e., SC+RV+AR. Img: image processing output, i.e., Canny+HED.

Fig. 10. Computer-generated results and drawings. (a) Image prompts. (b) Suggestive contours (SC). (c) Ridges and valleys (RV). (d) Apparent ridges (AR).
(e) Canny edges. (f) Thinned holistically-nested edges (HED). (g) Sample tracings. (h) Sample registered freehand drawings. A 3D model is required for (b)–(d).
Chair model by KarloBalboa on TurboSquid (royalty-free). Tape model by Artec Group, Inc. (CC BY 3.0). Vase model by 3dhdscan on Sketchfab (CC BY 4.0).

Findings: As shown in Fig. 9a, all CGDA methods used in our
analysis achieved comparable precision and recall on tracing and
freehand drawing—about 60% of drawn content is consistent with
computer-generated output. A one-way ANOVA suggests that NPR
algorithms achieved higher precision than image processing al-
gorithms although the difference in recall was not as significant.
SC and RV achieved comparable precision whereas AR achieved
higher precision. RV and AR achieved comparable recall whereas
SC achieved lower recall. Canny and HED achieved comparable
precision but Canny achieved higher recall than HED. AR is the
best proxy for drawing among these methods.

4.4.2 Image attributes. Weobserved that CGDA algorithms achieved
different performance on different images. To better understand the
disparity, we analyze how image attributes relate to the performance
of CGDA algorithms. We divided the image prompts based on their
attributes and computed the average precision and recall for CGDA
results (Fig. 9bc). Among all 70 prompts, 39 have a background and

45 contain texture. Using one way ANOVA, we found that for both
tracing and freehand drawing, NPR output achieved lower precision
and recall on image prompts containing background or texture. This
agrees with our intuition because NPR typically does not consider
image background or object texture. Image processing-based CGDA
output achieved lower precision and recall on prompts with back-
ground or texture for both forms of drawing, although the difference
in recall is not as prominent. This can be explained by the fact that
image processing methods often include extraneous edges from
background and texture areas that people do not necessarily draw.

Findings: The disparity between precision and recall on different
prompts shows a gap between drawings and computer-generated
results, and reveals that people employ diverse drawing strategies
when depicting complex prompts, e.g., non-diffuse and textured
objects. Such prompts are lacking in previous drawing studies, and
therefore the richness of hand-drawn data was not captured. This
analysis shows our dataset’s value for identifying extensions to NPR
and image processing algorithms that better approximate drawing.
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4.4.3 Correlation with common strokes. In Section 4.1 (Fig. 3), we
discovered that people tended to depict a common set of contours,
and here we examine how these common strokes correspond to
computer-generated output. We used three density maps (tracing,
freehand drawing, CGDA) to compute two per-stroke metrics: com-
mon score and CGDA score. We rasterized each stroke, recorded
the maximum tracing or freehand drawing density in a 5×5 neigh-
borhood of each pixel along the stroke, and averaged the density
values over the entire stroke to compute the common score. Simi-
larly, we computed the CGDA score with a density map generated
by combining computer-generated results of all NPR and image
processing algorithms. Then, we computed the Pearson correlation
coefficients with a p-value between both scores and stroke order, as
well as between the two scores for all strokes in each drawing.

As shown in Fig. 11d, the common score and the CGDA score
tend to decrease over time. This decrease is more pronounced in
tracing. There is a significantly positive correlation between the
common score and the CGDA score in 85% or more of the tracings
and freehand drawings. On average, strokes captured by CGDA
(score≥0.5) account for 62% pixels in tracing and 60% pixels in
freehand drawing, suggesting that about 40% of hand-drawn content
remains uncaptured.
Findings: CGDA methods can capture content that people com-

monly draw, but not the diverse artistic choices that people employ.

4.4.4 Comparison with NPR hatching. We observed that in addi-
tion to contours, people often depicted tone details using hatching.
Therefore, we compare drawing with NPR hatching [Praun et al.
2001] to determine how well NPR captures drawn shading. We first
created a composite of all drawings for each prompt and blurred
the composite using a 25×25 box filter to get areas of dense stroke
coverage. Then, we generated NPR hatching using the same config-
urations as the prompts and varied the light intensity so that the
hatching image blurred with the same box filter had a similar level of
overall response as the blurred drawing composite (Fig. 12). Similar
to the previous definition of precision and recall, we computed the
fraction of pixels in the blurred NPR hatching whose response was
within 10% of total response range at the same pixel in the blurred
drawing composite and vice versa.
In both tracing and freehand drawing, less than half of drawn

shading is consistent with the hatching algorithm. For example,
the algorithm generates uniform hatching in the hair and the face,
whereas people place strokes primarily in the hair to demonstrate
texture. Furthermore, people tend to emphasize the contrast near
highlights, whereas the hatching algorithm tends to avoid them.
Findings: The hatching algorithm does not understand the se-

mantics of the prompt, resulting in hatching patterns different from
what people draw. The diversity of shading techniques presented in
our dataset can inform new NPR hatching algorithms.

4.4.5 Local properties. Since computer-generated output is derived
from local properties, it is necessary to examine which ones con-
tribute most to stroke placement. Following notations in previous
analysis [Cole et al. 2008], we computed four image-space proper-
ties for all prompts, including image luminance (ImgLuminance),
gradient magnitude (ImgGradMag), and maximum and minimum
eigenvalues of the image Hessian (ImgMaxCurv and ImgMinCurv).
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Fig. 11. Correlation between stroke order, common score, and CGDA score.
(a) A drawing pseudocolored by stroke order. Warmer color represents later
drawn strokes. (b) A drawing pseudocolored by common score. Warmer
color represents more commonly drawn strokes. (c) A drawing pseudocol-
ored by CGDA score. Warmer color represents strokes better captured by
CGDA. (d) Percentage of drawings with a significantly positive, significantly
negative, or insignificant correlation between common score, CGDA score,
and stroke order. Note that common strokes tend to be captured by CGDA.

We computed the dot product between normal and view vectors
(N ·V ) for 21 photometric stereo and 33 rendered prompts. We also
computed nine object-space properties for the rendered prompts,
including the maximum, minimum, mean, and Gaussian curvatures,
the derivative of the maximum curvature in the corresponding direc-
tion, the largest view-dependent principal curvature (ViewDepCurv)
and its derivative in the corresponding direction, the radial curva-
ture and its derivative in the radial direction. We used a random
forest regressor to construct a hierarchy of conditionals on local
properties to predict the probability of stroke placement for each
prompt and understand feature importance of each local property.
The six local properties most important for predicting stroke

placement are shown in the inset table. ImgGradMag, N · V , and
ImgLuminance are most important; ImgGradMag is not dominantly

Tracing Freehand
ImgGradMag 33.92% 29.36%
N ·V 30.10% 33.15%
ImgLuminance 21.86% 25.50%
ViewDepCurv 17.53% 14.07%
ImgMinCurv 4.76% 4.39%
ImgMaxCurv 4.38% 3.75%

important. ViewDepCurv
is the fourth important
local property, which
agrees with our obser-
vation that apparent
ridges better approx-
imate drawing than
other CGDA methods.
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Fig. 12. Comparison between drawn and computer-generated hatching. (a) Image prompts. (b) Composites of all tracings of the prompt. (c) Results of the
hatching algorithm. (d) Blurred version of (b). (e) Blurred version of (c). (f) Differences between (d) and (e). White indicates the difference is within 10% of the
response range. Blue indicates a stronger response in the NPR hatching. Red indicates a stronger response in the drawing composite. (g) Average precision and
recall of the hatching algorithm on all 33 rendered images. Bust model by atanazy on TurboSquid (royalty-free). Bone model by Artec Group, Inc. (CC BY 3.0).

Findings: Each local property has comparable importance when
used to predict stroke placement in tracing and freehand drawing,
indicating similarity between the two forms. The high importance
of N ·V and ImgLuminance shows the value of strokes for shading
in our dataset compared to those containing only contours.

5 CONCLUSION
In this paper, we present an analysis of a new dataset that reveals
the similarities and differences between freehand drawing, tracing,
and computer-generated drawing approximation. Our wide range
of image prompts and different types of strokes provide a valuable
supplement to previous sketch datasets and informs new areas of
drawing research. From our analysis, we find that tracing is similar
to freehand drawing in terms of temporal tendencies and represen-
tation choices, and thus can serve as a viable proxy for drawing. An
examination of both tracing and freehand drawing suggests that
people’s intention evolves over time, which can be characterized by
similar spatio-temporal stroke features. By comparing hand-drawn
data with computer-generated output, we find that current NPR
and image processing methods only capture 60% of drawn pixels on
average, highlighting the great value of collecting hand-drawn data.
Our study has several limitations. There might exist potential

bias due to our setup of data collection—drawing habits may differ
between digitized strokes from stylus input versus pen on paper, as
well as when no time limit is imposed. Our registration of freehand
drawings to tracings may introduce registration errors and this form
of normalization might mask artistic styles. We did not consider
undo operations that might reveal useful information about revision
and refinement. Our findings in comparing drawing to CGDA are
specific to the commonly-used algorithms that we considered.
Our dataset and analysis are useful and have implications in a

variety of applications, such as training data for data-driven NPR
methods that better emulate the drawing process, as well as cus-
tomized treatment and recognition of different types of strokes in
sketching interfaces. For example, the temporal information and

shading strokes from our dataset can be used to learn order assign-
ment and drawing density through image translation networks. Our
stroke classifiers are also useful for understanding drawing inten-
tion, making it possible to infer shape from strokes of different styles.
Other interesting future work includes analyzing construction lines
and junctions, comparing artists of varied expertise, and understand-
ing distortion in freehand drawing. The dataset and analysis code are
available at https://github.com/zachzeyuwang/tracing-vs-freehand.
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