Winding Numbers on Discrete Surfaces

Nicole Feng, Mark Gillespie, Keenan Crane

Carnegie Mellon University

[date]

Problem

Problem

Fence bounds a region:

Fence bounds a region:

Fence doesn't bound a region:

Fence bounds a region:

classifying loops

Surface Winding Numbers (SWN)

Complex analysis, differential geometry, topology, electromagnetism...

Winding numbers have succeeded before!

Winding numbers have succeeded before!

surface reconstruction mesh booleans iterative normal estimation [Xu et al. 2023] [Barill et al. 2018] [Collet et al. 2015] [Collet et al. 2015] [Collet et al. 2015]

geometric preprocessing

(Generalized) winding number = solid angle

[Euler 1781; Lagrange 1798; Gauss 1838, Maxwell 1881...]

On Solid Angles.

417.] We have already proved that at any point P the potential due to a magnetic shell is equal to the solid angle subtended by the edge of the shell multiplied by the strength

[Maxwell 1881]

(Generalized) winding number = solid angle

[Euler 1781; Lagrange 1798; Gauss 1838, Maxwell 1881...]

Winding number & solid angle in graphics

[Shimrat 1962; Haines 1994; Goral et al. 1984; Veach & Guibas 1995...]

On Solid Angles.

417.] We have already proved that at any point P the potential due to a magnetic shell is equal to the solid angle subtended by the edge of the shell multiplied by the strength

(Generalized) winding number = solid angle

[Euler 1781; Lagrange 1798; Gauss 1838, Maxwell 1881...]

Winding number & solid angle in graphics

[Shimrat 1962; Haines 1994; Goral et al. 1984; Veach & Guibas 1995...]

On Solid Angles.

417.] We have already proved that at any point P the potential due to a magnetic shell is equal to the solid angle subtended by the edge of the shell multiplied by the strength

Poisson Surface Reconstruction — Generalized Winding Number

[Kazhdan et al. 2006]

(Generalized) winding number = solid angle

[Euler 1781; Lagrange 1798; Gauss 1838, Maxwell 1881...]

Winding number & solid angle in graphics

[Shimrat 1962; Haines 1994; Goral et al. 1984; Veach & Guibas 1995...]

On Solid Angles.

417.] We have already proved that at any point P the subtended by the edge of the shell multiplied by the strength

Poisson Surface Reconstruction — Generalized Winding Number [Jacobson et al. 2013]

[Kazhdan et al. 2006]

Winding Turning number on surfaces

[Reinhart 1960, 1963; Chillingworth 1972; Humphries & Johnson 1989; McIntyre & Cairns 1993; Chernov & Rudyak 2009]

Poisson Surface Reconstruction (PSR) & Generalized Winding Number (GWN) don't always identify well-defined regions.

Poisson Surface Reconstruction. Kazhdan, Bolitho, Hoppe (2006) Robust Inside-Outside Segmentation using Generalized Winding Numbers. Jacobson, Kavan, Sorkine-Hornung (2013)

Poisson Surface Reconstruction (PSR) & Generalized Winding Number (GWN) don't always identify well-defined regions.

Poisson Surface Reconstruction. Kazhdan, Bolitho, Hoppe (2006) Robust Inside-Outside Segmentation using Generalized Winding Numbers. Jacobson, Kavan, Sorkine-Hornung (2013)

Poisson Surface Reconstruction (PSR) & Generalized Winding Number (GWN) don't always identify well-defined regions.

Poisson Surface Reconstruction. Kazhdan, Bolitho, Hoppe (2006) Robust Inside-Outside Segmentation using Generalized Winding Numbers. Jacobson, Kavan, Sorkine-Hornung (2013)

Classic methods fail

Poisson Surface Reconstruction (PSR) & Generalized Winding Number (GWN) don't always identify well-defined regions.

Classic methods fail

Poisson Surface Reconstruction (PSR) & Generalized Winding Number (GWN) don't always identify well-defined regions.

Classic methods fail

Poisson Surface Reconstruction (PSR) & Generalized Winding Number (GWN) don't always identify well-defined regions.

Many formulas for solid angle...

Many formulas for solid angle...

Many formulas for solid angle...

BoolSurf [Riso et al. 2022]:

[Riso et al. 2022]

input is already segmented into loops

BoolSurf [Riso et al. 2022]:

[Riso et al. 2022]

BoolSurf [Riso et al. 2022]:

input is already segmented into loops closed loops only

BoolSurf [Riso et al. 2022]:

input is already segmented into loops

closed loops only

BoolSurf [Riso et al. 2022]:

input is already segmented into loops

closed loops only

BoolSurf [Riso et al. 2022]:

input is already segmented into loops

closed loops only

BoolSurf [Riso et al. 2022]:

input is already segmented into loops

closed loops only

Geometry processing with homological constraints

[Born et al. 2021; Dey et al. 2010; Wang & Chern 2021]

Geometry processing with homological constraints

[Born et al. 2021; Dey et al. 2010; Wang & Chern 2021]

Geometry processing with homological constraints

[Born et al. 2021; Dey et al. 2010; Wang & Chern 2021]

We want to infer curve topology!

Input:

(Possibly broken) oriented curve Γ on a surface M.

Input:

(Possibly broken) oriented curve Γ on a surface M.

Output:

Input:

(Possibly broken) oriented curve Γ on a surface M.

Output:

Region labels induced by bounding components of Γ .

Input:

(Possibly broken) oriented curve Γ on a surface M.

Output:

Region labels induced by bounding components of Γ .

A decomposition of Γ into:

Input:

(Possibly broken) oriented curve Γ on a surface M.

Output:

Region labels induced by bounding components of Γ .

A decomposition of Γ into:

- bounding components that induce valid regions

Input:

(Possibly broken) oriented curve Γ on a surface M.

Output:

Region labels induced by bounding components of Γ .

A decomposition of Γ into:

- bounding components that induce valid regions
- nonbounding components.

Input:

(Possibly broken) oriented curve Γ on a surface M.

Output:

Region labels induced by bounding components of Γ .

A decomposition of Γ into:

- bounding components that induce valid regions
- nonbounding components.

A closed, completed version of the input curve.

Input:

(Possibly broken) oriented curve Γ on a surface M.

 Γ is **not** partitioned into loops — no labels!

Output:

Region labels induced by bounding components of Γ .

A decomposition of Γ into:

- bounding components that induce valid regions
- nonbounding components.

A closed, completed version of the input curve.

It's difficult to reason about the homology class of *broken* curves.

It's difficult to reason about the homology class of *broken* curves.

Instead of processing curves directly, we process functions *dual* to curves using *de Rham cohomology*.

It's difficult to reason about the homology class of *broken* curves.

Instead of processing curves directly, we process functions *dual* to curves using *de Rham cohomology*.

We map from functions back to curves, yielding final output.

Talk outline

- Algorithm in the smooth setting
- Discretization
- Evaluation & Results

SMOOTH FORMULATION

Ordinary winding number: a piecewise constant function

Ordinary winding number: a piecewise constant function

Ordinary winding number: a piecewise constant function

Winding number as an angle-valued function

Winding number as an angle-valued function

$$\Delta u = 0, \quad \text{on } M \setminus \Gamma,$$

on
$$M \setminus \Gamma$$
,

$$\Delta u = 0,$$
 on $M \setminus \Gamma$,
 $u^+ - u^- = 1$, on Γ ,

$$\Delta u = 0,$$
 on $M \setminus \Gamma$,
 $u^+ - u^- = 1^*,$ on Γ ,
 $\partial u^+ / \partial n = \partial u^- / \partial n,$ on Γ .

$$\Delta u = 0,$$
 on $M \setminus \Gamma$,
 $u^{+} - u^{-} = 1$, on Γ ,
 $\partial u^{+}/\partial n = \partial u^{-}/\partial n$, on Γ .

Our starting point is the "Jump Laplace equation":

$$\Delta u = 0,$$
 on $M \setminus \Gamma$,
 $u^+ - u^- = 1$, on Γ ,
 $\partial u^+ / \partial n = \partial u^- / \partial n$, on Γ .

If *M* is simply-connected, and all curves are closed, then we're done!

The first homology group $H_1(M) = \ker(\partial_1) \setminus \operatorname{im}(\partial_2)$ tells us about (closed) curves that are not boundaries of regions.

The first homology group $H_1(M) = \ker(\partial_1) \setminus \operatorname{im}(\partial_2)$ tells us about (closed) curves that are not boundaries of regions.

For clarity,

bounding := nullhomologous

The first homology group $H_1(M) = \ker(\partial_1) \setminus \operatorname{im}(\partial_2)$ tells us about (closed) curves that are not boundaries of regions.

For clarity,

bounding := nullhomologous

nonbounding := non-nullhomologous

How does homology apply to broken curves?

How does homology apply to broken curves?

It's difficult to reason about curves directly.

How does homology apply to broken curves?

It's difficult to reason about curves directly.

Instead of processing curves directly, we process functions *dual* to curves using *de Rham cohomology*.

Jump harmonic functions

First let's talk about differentiating & integrating jump harmonic functions.

Consider a periodic 1D function f(x) on [0,1]:

Consider a periodic 1D function f(x) on [0,1]:

Consider a periodic 1D function f(x) on [0,1]:

continuous part

Consider a periodic 1D function f(x) on [0,1]:

continuous part

$$\omega \coloneqq \mathcal{D}f$$

Consider a periodic 1D function f(x) on [0,1]:

continuous part

Consider a periodic 1D function f(x) on [0,1]:

continuous part

$$\omega \coloneqq \mathcal{D}f$$

"jump part"

$$\mathcal{J}f = \Sigma_i \Lambda_i \delta_{x_i}$$

Derivatives of jump harmonic functions

For a **jump harmonic** function f, the *Darboux derivative* $\omega := \mathcal{D}f$ "forgets" jumps:

Derivatives of jump harmonic functions

For a **jump harmonic** function f, the *Darboux derivative* $\omega := \mathcal{D}f$ "forgets" jumps:

jump harmonic function

Derivatives of jump harmonic functions

For a **jump harmonic** function f, the Darboux derivative $\omega := \mathcal{D}f$ "forgets" jumps:

jump harmonic function

Derivatives of jump harmonic functions

For a **jump harmonic** function f, the *Darboux derivative* $\omega := \mathcal{D}f$ "forgets" jumps:

jump harmonic function

We can only integrate "up to jumps":

$$\omega \coloneqq \mathcal{D}f$$

We can only integrate "up to jumps":

We can only integrate "up to jumps":

We can only integrate "up to jumps":

We can only integrate "up to jumps":

Moral: To map from derivatives back to curves, we can integrate ω — and choose the jumps!

2D jump harmonic functions — same story

2D jump harmonic functions — same story

For a **jump harmonic** function f, the *Darboux derivative* $\omega := \mathcal{D}f$ "forgets" jumps:

2D jump harmonic functions — same story

For a **jump harmonic** function f, the *Darboux derivative* $\omega := \mathcal{D}f$ "forgets" jumps:

Nonbounding curves ⇔ nonzero derivative

Nonbounding curves ⇔ nonzero derivative

If $\omega = 0$, then u is piecewise constant \Rightarrow u is already a valid region labeling.

Nonbounding curves ⇔ nonzero derivative

If $\omega = 0$, then u is piecewise constant \Rightarrow u is already a valid region labeling.

Otherwise, Γ has nonbounding components:

Hodge decomposition:

$$\omega = d\alpha + \delta\beta + \gamma$$

 γ is a **harmonic 1-form**

Hodge decomposition:

$$\omega = d\alpha + \delta\beta + \gamma$$

 γ is a **harmonic 1-form**

Nonbounding components of Γ are encoded by the harmonic component γ of ω .

More formally: (Non)bounding components of Γ correspond to 1-forms (non)congruent to zero in the first cohomology group $H^1(M) = \ker(d_1) \setminus \operatorname{im}(d_0)$.

Derivative decomposition → curve decomposition

Derivative decomposition → curve decomposition

Search for a scalar potential v that could have generated γ .

$$\mathcal{D}v = \gamma$$

Search for a scalar potential v that could have generated γ .

$$\mathcal{D}v = \gamma$$

Since γ is harmonic, v must jump somewhere.

Search for a scalar potential v that could have generated γ .

$$\mathcal{D}v = \gamma$$

Since γ is harmonic, v must jump somewhere.

$$\min_{v:\ M\to\mathbb{R}} \int |\text{the jumps not across } \Gamma| + \varepsilon \int |\text{the jumps across } \Gamma|$$

penalize jumps

$$\min_{v:\ M\to\mathbb{R}}\ \int\ |\text{the jumps not across }\Gamma| + \varepsilon\int\ |\text{the jumps across }\Gamma|$$

penalize jumps

smaller penalty across Γ

$$\min_{v:\ M\to\mathbb{R}}\ \int\ |\text{the jumps not across }\Gamma| + \varepsilon\int\ |\text{the jumps across }\Gamma|$$

penalize jumps

smaller penalty across Γ

 $|+\varepsilon|$ | the jumps across Γ |

concentrate jumps across Γ

smaller penalty across Γ

$$+\varepsilon\int$$
 |the jumps across Γ |

concentrate jumps across Γ

subject to

$$\mathcal{D}v = \gamma$$

penalize jumps

smaller penalty across Γ

pick <u>shortest</u> completion in homology class

$$\min_{v:\ M o\mathbb{R}}$$

$$\int$$
 |the jumps not across Γ | + ε

concentrate jumps across Γ

subject to

$$\mathcal{D}v = \gamma$$

penalize jumps

smaller penalty across Γ

pick <u>shortest</u> completion in homology class

$$\min_{v:\;M o\mathbb{R}}$$

$$\int$$
 |the jumps not across Γ | + ε

+ $\varepsilon \int$ |the jumps across Γ |

concentrate jumps across Γ

subject to

$$\mathcal{D}v = \gamma$$

penalize jumps

smaller penalty across Γ

$$\min_{v: M \to \mathbb{R}}$$

$$\begin{array}{c|c} \textit{pick shortest} \\ \textit{completion in} \\ \textit{homology class} \end{array} \quad \begin{array}{c} \displaystyle \min_{v:\ M \to \mathbb{R}} \\ \end{array} \quad \int |\text{the jumps not across } \Gamma| \\ + \varepsilon \int |\text{the jumps across } \Gamma| \\ \end{array}$$

+
$$\varepsilon \int$$
 |the jumps across Γ |

concentrate jumps across Γ

subject to
$$\mathcal{D}v = \gamma$$

$$\mathcal{D}v = \gamma$$

$$0 \le \frac{v^+ - v^-}{u^+ - u^-} \le 1$$
 on Γ no extra loops

penalize jumps

smaller penalty across Γ

$$\min_{v:\ M\to\mathbb{R}}$$

completion in homology class \int | the jumps not across Γ | + $\varepsilon \int$ | the jumps across Γ | homology class

concentrate jumps across Γ

subject to
$$\mathcal{D}v = \gamma$$

$$\mathcal{D}v = \gamma$$

(co)homology constraint

$$0 \le \frac{v^+ - v^-}{u^+ - u^-} \le 1$$
 on Γ no extra loops

"residual function"

1-forms → jump harmonic functions

1-forms → jump harmonic functions

Jump harmonic function → curve decomposition

Winding number function

Winding number function

Simply subtracting the residual function yields extraneous discontinuities.

Winding number function

Simply subtracting the residual function yields extraneous discontinuities.

Solution: Solve for a new harmonic function w with jumps only across Γ .

curves jump harmonic functions 1-forms

• Solve for a harmonic function u with jumps Γ .

- Solve for a harmonic function u with jumps Γ .
- Compute the harmonic part γ of $\mathcal{D}u$.

- Solve for a harmonic function u with jumps Γ .
- Compute the harmonic part γ of $\mathcal{D}u$.
- Solve a (linear) optimization to obtain the residual function v.

- Solve for a harmonic function u with jumps Γ .
- Compute the harmonic part γ of $\mathcal{D}u$.
- Solve a (linear) optimization to obtain the residual function v.
- Solve for the winding number function w with jumps $\Gamma \mathcal{J}v$

- Solve for a harmonic function u with jumps Γ .
- Compute the harmonic part γ of $\mathcal{D}u$.
- Solve a (linear) optimization to obtain the residual function v.
- Solve for the winding number function w with jumps $\Gamma \mathcal{J}v$

if surface M is multiply-connected

Surfaces with boundary

Bounding curves are those congruent to zero in the *relative homology* group $H_1(M, \partial M)$.

The rest of the theory follows.

orientable curve

orientable curve

non-orientable curve

orientable curve

non-orientable curve

orientable curve

non-orientable curve

orientable curve

non-orientable curve

tangential

normal

53

orientable curve

non-orientable curve

tangential

normal

On orientable surfaces, tangential orientation ≡ normal orientation

orientable curve

non-orientable curve

tangential

On orientable surfaces, tangential orientation ≡ normal orientation

On **non**-orientable surfaces, must specify <u>normal orientation</u>

tangential

normal

On orientable surfaces, tangential orientation ≡ normal orientation

> On non-orientable surfaces, must specify <u>normal orientation</u>

DISCRETIZATION

Curves & regions

Curves & regions

M=(V,E,F)

 Γ is a **1-chain**, i.e. a signed integer per edge.

Regions are 2-chains, signed integers per face.

Endpoints

The boundary of Γ is a *0-chain*, $(\partial \Gamma)_i := -\Sigma_{ij}\Gamma_{ij}$

Endpoints

The boundary of Γ is a *0-chain*, $(\partial \Gamma)_i := -\Sigma_{ij}\Gamma_{ij}$

Endpoints

The boundary of Γ is a *0-chain*, $(\partial \Gamma)_i := -\Sigma_{ij}\Gamma_{ij}$

Endpoints

The boundary of Γ is a 0-chain, $(\partial \Gamma)_i := -\Sigma_{ij}\Gamma_{ij}$

interior endpoints

Endpoints

The boundary of Γ is a 0-chain, $(\partial \Gamma)_i := -\Sigma_{ij}\Gamma_{ij}$

interior endpoints

 $V^*:=$ set of mesh vertices that are not interior endpoints

 $E^* :=$ set of edges with both points in V^*

Endpoints are singular

Endpoints represent *singular points:*There are no corner values compatible with jumps.

Endpoints are singular

Endpoints represent *singular points:*There are no corner values compatible with jumps.

Endpoints are singular

Endpoints represent *singular points:*There are no corner values compatible with jumps.

$$f(\lambda_i, \lambda_j, \lambda_k) := \frac{\lambda_j f_j^{ki} + \lambda_k f_k^{ij}}{\lambda_j + \lambda_k}$$

$$f(\lambda_i, \lambda_j, \lambda_k) := \frac{\lambda_j f_j^{ki} + \lambda_k f_k^{ij}}{\lambda_j + \lambda_k}$$

Solving the jump Laplace equation...

The discrete jump Laplacian

Build the standard cotan Laplacian on V^* :

$$L_{ij} = L_{ji} = -\mathbf{w}_{ij}, \quad \forall ij \in E^*$$

 $L_{ii} = \sum_{\in E^*} \mathbf{w}_{ij}, \quad \forall i \in V^*$

$$\mathbf{w}_{ij} := \frac{1}{2} \sum_{ijk \in F} \cot \alpha_k^{ij}$$

A jump harmonic function f is harmonic "up to jumps" Λ .

A jump harmonic function f is harmonic "up to jumps" Λ .

Value per corner → **one** value per vertex!

A jump harmonic function f is harmonic "up to jumps" Λ .

Value per corner → **one** value per vertex!

Apply change of variables and solve

$$Lf_0 = b$$

A jump harmonic function f is harmonic "up to jumps" Λ .

Value per corner → **one** value per vertex!

Apply change of variables and solve

values per vertex

$$Lf_0 = b$$

constant vector encoding per-corner jumps

A jump harmonic function f is harmonic "up to jumps" Λ .

Value per corner → **one** value per vertex!

Designing Quadrangulations with Discrete Harmonic Forms. Tong, Alliez, Cohen-Steiner, Desbrun (2006)

Apply change of variables and solve

values per vertex

$$Lf_0 = b$$

constant vector encoding per-corner jumps

1 Solve the Jump Laplace equation for *u*

Jump harmonic functions → Derivatives...

Jump compatibility condition:

$$f_i^{jk} - f_i^{lj} = f_j^{ki} - f_j^{il}$$

Jump compatibility condition:

$$f_i^{jk} - f_i^{lj} = f_j^{ki} - f_j^{il}$$

Darboux derivative:

$$(\mathcal{D}f)_{ij} \coloneqq f_j^{ki} - f_i^{jk}$$

Jump derivative:

$$(\mathcal{J}f)_{ij} := f_i^{jk} - f_i^{lj}$$

^{*}subject to curve endpoints or nonmanifold edges

2 DIFFERENTIATE *u*

Derivative decomposition...

$$\omega = d\alpha + \delta\beta + \gamma$$

$$\omega = \alpha + \delta \beta + \gamma$$

Lemma, Appendix A

$$\omega = \cancel{\alpha} + \delta \beta + \gamma$$

Lemma, Appendix A

Solve Poisson equation:

$$\Delta_2 \beta = d_1 \omega$$

$$\Delta_2 := d_1 *_1^{-1} d_1^T *_2$$

Discrete differential forms for computational modeling.
Desbrun, Kanso, Tong (2005)

$$\omega = \cancel{\alpha} + \delta \beta + \gamma$$

Lemma, Appendix A

$$\Delta_2 \beta = d_1 \omega$$

$$\Delta_2 := d_1 *_1^{-1} d_1^T *_2$$

Get harmonic component:

$$\gamma \leftarrow \omega - \delta \beta$$

Discrete differential forms for computational modeling. Desbrun, Kanso, Tong (2005)

\bigcirc Hodge decompose ω

1-forms → Jump harmonic functions...

Integrating γ with jumps

First locally integrate γ in each triangle.

Integrating γ with jumps

First locally integrate γ in each triangle.

$$\mathring{v}_i^{jk} := 0$$

Integrating γ with jumps

First locally integrate γ in each triangle.

Integrating γ with jumps

First locally integrate γ in each triangle.

Computing the residual function $\begin{bmatrix} & \Delta^{-1} & u & \mathcal{D} \\ & \ddots & \ddots & \ddots \end{bmatrix}$

Applying a change of variable, optimize for |F| per-face shifts:

$$\min_{\sigma \in \mathbb{R}^{|F|}} \sum_{ij \in \Gamma \cap E_{\text{int}}} \ell_{ij} |(\sigma_{ijk} - \sigma_{jil}) - s_{ij}| + \frac{1}{\varepsilon} \sum_{ij \in E_{\text{int}} \setminus \Gamma} \ell_{ij} |(\sigma_{ijk} - \sigma_{jil}) - s_{ij}|$$
s.t. $0 \le \frac{(\sigma_{ijk} - \sigma_{jil}) - s_{ij}}{\Gamma_{ij}} \le 1$, $\forall ij \in \Gamma$. linear program

Computing the residual function $\int_{0}^{\Delta^{-1}} u \xrightarrow{\mathcal{D}} u \xrightarrow{\mathcal{D}} u$

Applying a change of variable, optimize for |F| per-face shifts:

$$\min_{\sigma \in \mathbb{R}^{|F|}} \sum_{ij \in \Gamma \cap E_{\text{int}}} \ell_{ij} |(\sigma_{ijk} - \sigma_{jil}) - s_{ij}| + \frac{1}{\varepsilon} \sum_{ij \in E_{\text{int}} \setminus \Gamma} \ell_{ij} |(\sigma_{ijk} - \sigma_{jil}) - s_{ij}|$$
s.t. $0 \le \frac{(\sigma_{ijk} - \sigma_{jil}) - s_{ij}}{\Gamma_{ij}} \le 1$, $\forall ij \in \Gamma$. $\forall ij \in \Gamma$.

Afterwards, recover solution v.

4 COMPUTE THE RESIDUAL FUNCTION

5 DECOMPOSE CURVE

Winding number function

Solve jump Laplace equation with jumps $\Gamma - \mathcal{J}v$ to obtain w.

Winding number function

Solve jump Laplace equation with jumps $\Gamma - \mathcal{J}v$ to obtain w.

Winding number function

Solve jump Laplace equation with jumps $\Gamma - \mathcal{J}v$ to obtain w.

We compute a global shift τ such that $w + \tau$ is integer along Γ .

It's difficult to reason about the homology class of *broken* curves.

It's difficult to reason about the homology class of *broken* curves.

Instead of processing curves directly, we process functions *dual* to curves using *de Rham cohomology*.

It's difficult to reason about the homology class of *broken* curves.

Instead of processing curves directly, we process functions *dual* to curves using *de Rham cohomology*.

We map from functions back to curves, yielding integer region labels & identification of nonbounding components.

It's difficult to reason about the homology class of *broken* curves.

Instead of processing curves directly, we process functions *dual* to curves using *de Rham cohomology*.

We map from functions back to curves, yielding integer region labels & identification of nonbounding components.

It's difficult to reason about the homology class of *broken* curves.

Instead of processing curves directly, we process functions *dual* to curves using *de Rham cohomology*.

We map from functions back to curves, yielding integer region labels & identification of nonbounding components.

sparse linear program

RESULTS

Robustness to defects in both Γ and M

Robustness to defects in both Γ and M

highly non-manifold surfaces

Intrinsic retriangulation

Navigating Intrinsic Triangulations. Sharp, Soliman, Crane (2019)
Integer Coordinates for Intrinsic Geometry Processing. Gillespie, Sharp, Crane (2021)

Benchmark setup

Benchmark setup

(1) Generate random ground-truth regions, take boundaries

[sub-levelsets of low-frequency Laplacian eigenfunctions]

Benchmark setup

- (1) Generate random ground-truth regions, take boundaries
- (2) Add nonbounding loops

[sub-levelsets of low-frequency Laplacian eigenfunctions]

[compute homology basis, select random subset]

Benchmark setup

- (1) Generate random ground-truth regions, take boundaries
- (2) Add nonbounding loops
- (3) Break up curves

[sub-levelsets of low-frequency Laplacian eigenfunctions]

[compute homology basis, select random subset]

[use random gap & dash size]

Benchmark setup

- (1) Generate random ground-truth regions, take boundaries
- (2) Add nonbounding loops
- (3) Break up curves
- (4) Run SWN; compute % of surface area correctly classified

[sub-levelsets of low-frequency Laplacian eigenfunctions]

[compute homology basis, select random subset]

[use random gap & dash size]

[shift w to match ground-truth value in an arbitrary face]

Benchmark setup

- (1) Generate random ground-truth regions, take boundaries
- (2) Add nonbounding loops
- (3) Break up curves
- (4) Run SWN; compute % of surface area correctly classified 934 total test cases, 451 multiply-connected

[sub-levelsets of low-frequency Laplacian eigenfunctions]

[compute homology basis, select random subset]

[use random gap & dash size]

[shift w to match ground-truth value in an arbitrary face]

Surface sketching

Booleans

Curve decomposition

Curve decomposition

Curve decomposition

g values give SWN's confidence in nonbounding loops

Region selection — robustness

using "ghost loops" to aid segmentation

to aid segmentation incomplete edge loop selection round(u)+1

using "ghost loops"

LIMITATIONS & FUTURE WORK

Contouring is sometimes counterintuitive

Contouring is sometimes counterintuitive

Contouring is sometimes counterintuitive

Euclidean winding number also struggles

Jacobson et al. suggest a graphcut algorithm for contouring:

Robust Inside-Outside Segmentation using Generalized Winding Numbers Jacobson, Kavan, Sorkine-Hornung (2013)

Euclidean winding number also struggles

Jacobson et al. suggest a graphcut algorithm for contouring:

Robust Inside-Outside Segmentation using Generalized Winding Numbers Jacobson, Kavan, Sorkine-Hornung (2013)

Euclidean winding number also struggles

Jacobson et al. suggest a graphcut algorithm for contouring:

Still not perfect!

Robust Inside-Outside Segmentation using Generalized Winding Numbers Jacobson, Kavan, Sorkine-Hornung (2013)

Recall objective function:
$$\min_{v: M \to \mathbb{R}} \int |\text{the jumps not across } \Gamma| + \varepsilon \int |\text{the jumps across } \Gamma|$$

Recall objective function:
$$\min_{v: M \to \mathbb{R}} \int |\text{the jumps not across } \Gamma| + \varepsilon \int |\text{the jumps across } \Gamma|$$

Recall objective function: $\min_{v: M \to \mathbb{R}} \int |\text{the jumps not across } \Gamma| + \varepsilon \int |\text{the jumps across } \Gamma|$

Recall objective function: $\min_{v: M \to \mathbb{R}} \int |\text{the jumps not across } \Gamma| + \varepsilon \int |\text{the jumps across } \Gamma|$

Recall objective function: $\min_{v: M \to \mathbb{R}} \int |\text{the jumps not across } \Gamma| + \varepsilon \int |\text{the jumps across } \Gamma|$

encourage jumps across Γ

Can always adversarially increase a handle's taper.

Recall objective function: $\min_{v: M \to \mathbb{R}} \int |\text{the jumps not across } \Gamma| + \varepsilon \int |\text{the jumps across } \Gamma|$

Recall objective function: $\min_{v: M \to \mathbb{R}} \int |\text{the jumps not across } \Gamma| + \varepsilon \int |\text{the jumps across } \Gamma|$

encourage jumps across Γ

But given a *fixed* mesh, we will recover the correct solution as gaps $\rightarrow 0$ (and appropriate choice of ε).

Recall objective function: $\min_{v: M \to \mathbb{R}} \int |\text{the jumps not across } \Gamma| + \varepsilon \int |\text{the jumps across } \Gamma|$

Performance

Performance

Performance

Computation dominated by linear program.

Current implementation simultaneously optimizes both jump locus and jump magnitudes.

Current implementation simultaneously optimizes both jump locus and jump magnitudes.

Instead:

Current implementation simultaneously optimizes both jump locus and jump magnitudes.

Instead:

Current implementation simultaneously optimizes both jump locus and jump magnitudes.

Instead:

Current implementation simultaneously optimizes both jump locus and jump magnitudes.

Instead:

Current implementation simultaneously optimizes both jump locus and jump magnitudes.

Instead:

Current implementation simultaneously optimizes both jump locus and jump magnitudes.

Instead:

1. Use a *separate* shortest-path heuristic (Dijkstra) to complete Γ .

2. Minimize the L^1 norm of jumps across connected components.

Current implementation simultaneously optimizes both jump locus and jump magnitudes.

Instead:

1. Use a *separate* shortest-path heuristic (Dijkstra) to complete Γ .

2. Minimize the L^1 norm of jumps across connected components.

Current implementation simultaneously optimizes both jump locus and jump magnitudes.

Instead:

1. Use a *separate* shortest-path heuristic (Dijkstra) to complete Γ .

nortest-path 2. Minimize the L^1 norm of jumps o complete Γ . across connected components. v

Number of DOFs: $|F| \rightarrow \text{just a few connected components!}$

Success rate on nontrivial surfaces

CONCLUSION

 Classic inside-outside definitions don't work on surfaces!

- Classic inside-outside definitions don't work on surfaces!
- Cohomology → robust homological geometry processing

- Classic inside-outside definitions don't work on surfaces!
- Cohomology → robust homological geometry processing
 - Duality between curves and 1-forms →
 use jump harmonic functions to
 translate between the two

Subsets of \mathbb{R}^n :

Subsets of \mathbb{R}^n :

Subsets of \mathbb{R}^n :

Extension of SWN to higher dimensions, e.g. periodic domains in 3D.

Winding numbers are everywhere!

Many mathematical & physical interpretations — see our supplemental for details!

Perspectives on Winding Numbers Nicole Feng, Mark Gillespie, Keenan Crane a constant jump across Γ (see [Brebbis et al. 1984, pp. 56–58] and Huiso and Wendland 2008. Ch. 11 for more formal discussion). More