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Not all curves bound regions!



Not all curves bound regions!

Fence bounds a region:




Not all curves bound regions!

Fence bounds a region: Fence doesn’t bound a region:




Not all curves bound regions!

Fence bounds a region: Fence doesn’t bound a region:

Not as simple as
classifying loops




Is the point inside or outside the curve?
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Is the point inside or outside the curve?

non-manifold non-orientable




Is the point inside or outside the curve?

non-manifold non-orientable with boundary




Is the point inside or outside the curve?

non-manifold non-orientable with boundary




Surface Winding Numbers (SWN)
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Winding number (solid angle)
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Complex analysis, differential geometry, topology, electromagnetism...




Winding numbers have succeeded before!



Winding numbers have succeeded before!

surface reconstruction mesh booleans iterative normal estimation

[Xu et al. 2023]

& a0 Zhourebal. 3076] [Barill et al. 2018] [Hou et al. 2022]
[Barill et al. 2018] [Collet et al. 2015] tet'meShlng
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[Chi, Song 2021] [Dvorak et al. 2021]
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Past definitions: Euclidean only!
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On Solid Angles.
417.] We have already proved that at any point P the
ential due by e )

(Generalized) winding number = solid angle ) v i s i o i 1
[Euler 1781; Lagrange 1798; Gauss 1838, Maxwell 1881...] [Maxwell 1881]



Past definitions: Euclidean only!

(Generalized) winding number = solid angle v i s i iy i

potential due to a mngnfti‘e sl?cl}‘ is ('fll‘m}. (<~) the ‘«)11'.1 angle
[Euler 1781; Lagrange 1798; Gauss 1838, Maxwell 1881...] [Maxwell 1881]

Winding number & solid angle in graphics

[Shimrat 1962; Haines 1994; Goral et al. 1984; Veach & Guibas 1995...] el '\*

[Haines 1994]

P

[Pharr et al. 2018]



Past definitions: Euclidean only!

(Generalized) winding number = solid angle = v o s o
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Winding number & solid angle in graphics
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[Haines 1994]

Poisson Surface Reconstruction — Generalized Winding Number
[Kazhdan et al. 2006] [ Jacobson et al. 2013]
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Past definitions: Euclidean only!

On Solid Angles.

(Generalized) winding number = solid angle i v i iy v o o s i 7

potential due to a magnetic shell is equal to the solid angle
anhtendaed Lv #he | f tha cahell mnltinliad he thae arvanath

[Euler 1781; Lagrange 1798; Gauss 1838, Maxwell 1881...] T [Maxwell 1881]

e

Winding number & solid angle in graphics
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[Shimrat 1962; Haines 1994; Goral et al. 1984; Veach & Guibas 1995...] e *\*

[Haines 1994]

Poisson Surface Reconstruction — Generalized Winding Number
[Kazhdan et al. 2006] [ Jacobson et al. 2013]
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Winding Turning number on surfaces

[Reinhart 1960, 1963; Chillingworth 1972; Humphries & Johnson 1989;
Mcintyre & Cairns 1993; Chernov & Rudyak 2009]

[ Jacobson et al. 2013]



Classic methods fail

Poisson Surface Reconstruction (PSR) & Generalized Winding Number (GWN)
don’t always identify well-defined regions.

Poisson Surface Reconstruction. Kazhdan, Bolitho, Hoppe (2006)

Robust Inside-Outside Segmentation using Generalized Winding Numbers.
10 Jacobson, Kavan, Sorkine-Hornung (2013)
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Classic methods fail

Poisson Surface Reconstruction (PSR) & Generalized Winding Number (GWN)
don’t always identify well-defined regions.

spurious
discontinuities!

PSR/GWN

Poisson Surface Reconstruction. Kazhdan, Bolitho, Hoppe (2006)

Robust Inside-Outside Segmentation using Generalized Winding Numbers.
11 Jacobson, Kavan, Sorkine-Hornung (2013)



Classic methods fail

Poisson Surface Reconstruction (PSR) & Generalized Winding Number (GWN)
don’t always identify well-defined regions.

Input
strokes

Robust Inside-Outside Segmentation using Generalized Winding Numbers.
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Classic methods fail

Poisson Surface Reconstruction (PSR) & Generalized Winding Number (GWN)
don’t always identify well-defined regions.

GWN

input
strokes

Robust Inside-Outside Segmentation using Generalized Winding Numbers.
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Classic methods fail

Poisson Surface Reconstruction (PSR) & Generalized Winding Number (GWN)
don’t always identify well-defined regions.

GWN rounded function
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Classic methods fail

Poisson Surface Reconstruction (PSR) & Generalized Winding Number (GWN)
don’t always identify well-defined regions.

GWN rounded function ours

input
strokes

Robust Inside-Outside Segmentation using Generalized Winding Numbers.
12 Jacobson, Kavan, Sorkine-Hornung (2013)
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Many formulas for solid angle...

... hone work on domains of general topology!
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The general case is difficult!
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BoolSurf [Riso et al. 2022]:
2

-~

[Riso et al. 2022]
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The general case is difficult!

BoolSurf [Riso et al. 2022]:
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Past approaches to "homological geometry processing”



Past approaches to "homological geometry processing”

Geometry processing with homological constraints
[Born et al. 2021; Dey et al. 2010; Wang & Chern 2021]
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Geometry processing with homological constraints
[Born et al. 2021; Dey et al. 2010; Wang & Chern 2021]

[Dey et al. 2010] [Born et al. 2021] [Wang & Chern 2021]
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Past approaches to "homological geometry processing”

Geometry processing with homological constraints
[Born et al. 2021; Dey et al. 2010; Wang & Chern 2021]

Q Q | a8 > | |

[Dey et al. 2010] [Born et al. 2021] [Wang & Chern 2021}

We want to infer curve topology!
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Input:

(Possibly broken) oriented curve I' @ //F .
on a surface M. "-;\
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Algorithm input & output

Input:
(Possibly broken) oriented curve I’ {/1_‘ &
on a surface M. "'-:)“

Output:

Region labels induced by bounding components of I
A decomposition of I into:

- bounding components that induce valid regions

- nonbounding components.

A closed, completed version of the input curve.
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Algorithm input & output

I'is not partltloned into loops — no labels!

Input:

(Possibly broken) oriented curve I’ @ //1_‘
on a surface M.

Output:

Region labels induced by bounding components of I
A decomposition of I into:

- bounding components that induce valid regions

- nonbounding components.

A closed, completed version of the input curve.
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Key insights

It's difficult to reason about the
homology class of broken curves.
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we process functions dual to curves
using de Rham cohomology.
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Key insights

It's difficult to reason about the
homology class of broken curves.

Instead of processing curves directly,
we process functions dual to curves
using de Rham cohomology.

We map from functions back to curves,
yielding final output.
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Talk outline

o Algorithm in the smooth setting
e Discretization

e Evaluation & Results
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SMOOTH FORMULATION



Ordinary winding number: a piecewise constant function
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Ordinary winding number: a piecewise constant function




Ordinary winding number: a piecewise constant function




Winding number as a jump harmonic function
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Winding number as a jump harmonic function




Winding number as an angle-valued function




Winding number as an angle-valued function




Winding number as a jump harmonic function



Winding number as a jump harmonic function

Our starting point is the “Jump Laplace equation™:

Au = 0, on M \T,
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Winding number as a jump harmonic function
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Our starting point is the “Jump Laplace equation™:

Au

ut —u"

: on M \T, M
1; onl,

" *In general, u*(x) — u~(x) = number of times I" covers x.



Winding number as a jump harmonic function

Nt

Our starting point is the “Jump Laplace equation™:

Au = 0, on M \T, M 4
ut—u- = 1 on T, '
out/on = ou /on, onT.

" *In general, u*(x) — u~(x) = number of times I" covers x.



Winding number as a jump harmonic function
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Our starting point is the “Jump Laplace equation”:

Au
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0, on M \T, M
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- *In general, u*(x) — u~(x) = number of times I" covers x.



Winding number as a jump harmonic function

Our starting point is the “Jump Laplace equation”:

Au = 0, on M \ I,
ut—u- = 1 on T,
out/on = ou /on, onT.

If M is simply-connected,
and all curves are closed,
then we’re done!

- *In general, u*(x) — u~(x) = number of times I" covers x.



Nonbounding loops complicate region labeling

Input
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Nonbounding loops complicate region labeling

jump harmonic
Input function u

.
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Nonbounding loops complicate region labeling

jump harmonic
Input function u

o

rounded
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Nonbounding loops complicate region labeling

jump harmonic
Input function u

.

This "ghost loop" was
not part of the input!

/

rounded
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What are nonbounding loops?



What are nonbounding loops?

The first homology group
H,(M) = ker(d,) \ 1m(0,) tells us about (closed)

curves that are not boundaries of regions.
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What are nonbounding loops?

bounding

The first homology group
H,(M) = ker(d,) \ 1m(0,) tells us about (closed)

curves that are not boundaries of regions.

For clarity,

bounding := nullhomologous

28



What are nonbounding loops?

bounding
The first homology group
H,(M) = ker(d,) \ 1m(0,) tells us about (closed)
curves that are not boundaries of regions.
nonbounding

For clarity,

bounding := nullhomologous

nonbounding := non-nullhomologous

28



How does homology apply to broken curves?



How does homology apply to broken curves?

It’s difficult to reason about curves directly.

29



How does homology apply to broken curves?

It’s difficult to reason about curves directly.

Instead of processing curves directly, we process
functions dual to curves using de Rham cohomology.
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A preview of the journey ahead

jump harmonic

functions 1-forms

curves
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A preview of the journey ahead

differentiate
jump harmonic )
curves fimotinme 1-forms
A_l
\___/

integrate  jump Laplace equation
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A preview of the journey ahead

differentiate jump derivative Darboux derivative
/"—\ /—"‘\
o D
curves Jun}ﬁnrftlir g;l‘(;mc 1-forms
\_A_l/ \L/

integrate  jump Laplace equation integration w/ jumps

Input:




Jump harmonic functions

differentiate

jump harmonic

functions 1-forms

curves

Integrate

First let's talk about differentiating & integrating
jump harmonic functions.

31



Derivatives of discontinuous functions
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Derivatives of discontinuous functions

Consider a periodic 1D function f(x) on [0,1]:
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f(x)
. differentiate
[/
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Oxoxlle
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Derivatives of discontinuous functions

Consider a periodic 1D function f(x) on [0,1]:

continuous part

f&) Df

ﬁ/ differentiate A /\ T
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Derivatives of discontinuous functions

Consider a periodic 1D function f(x) on [0,1]:

continuous part

f&) Df

ﬁ/ differentiate A /\ T
- TN P TEYTA

Oxoxlle

w:=9Df
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Derivatives of discontinuous functions

Consider a periodic 1D function f(x) on [0,1]:

continuous part "jJump part”

f&) Df Jf

_./° |_> xo\ /1

Oxoxlle

A A
X1 % n vl ¥Z
\ 0 | T = &

w:=9Df
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Derivatives of discontinuous functions

Consider a periodic 1D function f(x) on [0,1]:

continuous part "jJump part”

f&) Df Jf

_./° |_> xo\ /1

Oxoxlle

A A
X1 % n vl ¥Z
\ 0 | T = &

w=Df J | =2i\iox,
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Derivatives of jump harmonic functions

For a jump harmonic function f, the Darboux derivative « = 9 f "forgets" jumps:
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Derivatives of jump harmonic functions

For a jump harmonic function f, the Darboux derivative « = 9 f "forgets" jumps:

jump harmonic function Darboux derivative
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1] /ix > 0 ix

w:==Df
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Derivatives of jump harmonic functions

For a jump harmonic function f, the Darboux derivative « = 9 f "forgets" jumps:

jump harmonic function Darboux derivative

fx), )
» ifferentiate t

1) /ix > 0 ix

w:==Df

—I— jump derivative
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Integrating the Darboux derivative

We can only integrate "up to jumps":
Darboux derivative

W(x)

0
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Integrating the Darboux derivative

We can only integrate "up to jumps":
Darboux derivative
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Integrating the Darboux derivative

We can only integrate "up to jumps":
Darboux derivative

W(x) g(x)

Integrate
N

0
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Integrating the Darboux derivative

We can only integrate "up to jumps":

Darboux derivative

W(x)

0

Integrate

g(x)

0

//lx
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Integrating the Darboux derivative

We can only integrate "up to jumps":

Darboux derivative

()

0

Integrate

Moral: To map from derivatives back to curves,

we can integrate @ — and choose the jumps!

g(x) f(x)

0

//{x 7& ok /{x

34



2D jump harmonic functions — same story



2D jump harmonic functions — same story

For a jump harmonic function f, the Darboux derivative  := L f "forgets" jumps:

A (%)

0= /{x 0 ix
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2D jump harmonic functions — same story

For a jump harmonic function f, the Darboux derivative  := L f "forgets" jumps:

fA (x)/ > w(x)

o T_
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Nonbounding curves <= nonzero derivative
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Nonbounding curves <= nonzero derivative

If @ = 0, then u is piecewise constant = < L

o

u is already a valid region labeling.
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Nonbounding curves < nonzero derivative

If @ = 0, then u is piecewise constant =

u is already a valid region labeling.

Otherwise, I has nonbounding components:
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Derivative decomposition
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Derivative decomposition

jump harmonic

functions 1-forms

curves

A_l
\-/

jump Laplace equation

-1
r A > U
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Derivative decomposition

Darboux derivative

T e
D
curves jun}l[}nll?{::]gnic 1-forms
A—l
\——/
jump Laplace equation
I a > U >
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Derivative decomposition

Hodge decomposition:

o=da+8B+y

¥ is a harmonic 1-form

Darboux derivative

/—5\

jump harmonic

functions 1-forms

curves

A—l
v

jump Laplace equation

Al D

I > U >

—
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Derivative decomposition

Hodge decomposition:

o=da+8B+y

¥ is a harmonic 1-form

Darboux derivative

o
D
e jump harmonic R Nonbounding com?onents of I are encoded
e by the harmonic component y of w.
\—_/
jump Laplace equation
A-1 D .
T > U > More formally: (Non)bounding components of I correspond to 1-forms

)
l (non)congruent to zero in the first cohomology group H'(M) = ker(d,) \ im(d,).
Y
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Derivative decomposition — curve decomposition

Darboux derivative

/—z_)\

jump harmonic

functions 1-forms

curves

A—l
\—/

jump Laplace equation

A—l
I > U

D
@ @

B
Y
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Derivative decomposition — curve decomposition

Darboux derivative

/—z_)\

jump harmonic

functions 1-forms

curves
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1-forms — jump harmonic functions

Search for a scalar potential v that could have generated .

Do=y
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1-forms — jump harmonic functions

Search for a scalar potential v that could have generated .
Do=y

Since y is harmonic, v must jump somewhere.
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1-forms — jump harmonic functions

Search for a scalar potential v that could have generated .
Do =y

Since y is harmonic, v must jump somewhere.

integrate w/ jumps
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1-forms — jump harmonic functions
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1-forms — jump harmonic functions
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1-forms — jump harmonic functions

pendalize jumps
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1-forms — jump harmonic functions

pendalize jumps

smaller penalty across I’

min / |the jumps not across I'
v: M—R
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e/ Ithe jumps across T’
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1-forms — jump harmonic functions

pendalize jumps

smaller penalty across I’

min / |the jumps not across I'
v: M—R

+

e/ Ithe jumps across T’
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1-forms — jump harmonic functions

pendalize jumps

smaller penalty across I’

v: M—>R

min / |the jumps not across I'

+

e/ Ithe jumps across T’

subject to

O,
WPl

/V
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(co)homology constraint
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1-forms — jump harmonic functions

penalize jumps smaller penalty across I’

pick shortest

completion in  min |the jumps not across I'| [+|e [ |the jumps across I'|
v: M—R

concentrate
jumps across 1
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1-forms — jump harmonic functions

pick shortest
completion in

homology class

min
v: M—R

pendalize jumps

smaller penalty across I’

/ |the jumps not across I'

+

e/ Ithe jumps across T’

subject to Do=y

S

Input

44
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1-forms — jump harmonic functions

pick shortest
completion in

homology class

min
v: M—R

penalize jumps

smaller penalty across I

/ |the jumps not across I'

+

e/ Ithe jumps across T’

subject to Do=y

45
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onT’ no extra loops
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1-forms — jump harmonic functions

pick shortest
completion in

homology class

min
v: M—R

penalize jumps

smaller penalty across I

/ |the jumps not across I'

+

e/ Ithe jumps across T’

subject to Do=y

(co)homology constraint

onT’ no extra loops

"residual function"

45
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1-forms — jump harmonic functions

Darboux derivative

/-—"\
D
jump harmonic }
CUTES . fEnctions 1-forms
\A__];/ \L/
jump Laplace equation ?
I A~ u = W
>
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1-forms — jump harmonic functions

Darboux derivative

T e
D
jump harmonic 3
curves il e 1-forms
\A__l_/ \L——/
jump Laplace equation integration w/ jumps
-1
dr A > U D 3=
@
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Y
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1-forms — jump harmonic functions

Darboux derivative

/——\
D
jump harmonic 3
curves fﬁnctions 1-forms
\A__l_/ \L——/
jump Laplace equation integration w/ jumps
A~ D
|y > U
®

®
/
®
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Jump harmonic function — curve decomposition

jump derivative Darboux derivative

‘,f”sz“~\\ /,/"fES“-\k

jump harmonic

functions 1-forms

curves

D Nl

jump Laplace equation integration w/ jumps
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Winding number function



Winding number function

Simply subtracting the residual function
yields extraneous discontinuities.
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Winding number function

Simply subtracting the residual function Solution: Solve for a new harmonic
yields extraneous discontinuities. function w with jumps only across I'.
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Completing the round-trip

jump harmonic

functions 1-forms

curves
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Completing the round-trip

differentiate

jump harmonic

functions 1-forms

curves

Integrate
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Completing the round-trip

differentiate

jump harmonic
functions

Input:
I

curves 1-forms

Integrate
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Completing the round-trip

differentiate

curves

jump harmonic
functions

A—l
\_‘/

integrate  jump Laplace equation

Input:

1-forms
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Completing the round-trip

differentiate

Darboux derivative

— 7
D
curves Jun}lr‘)nllailirg:‘cs)mc 1-forms
A—l
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integrate  jump Laplace equation
Input: _
A 1
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Completing the round-trip

differentiate

Darboux derivative

1-forms

— 7
D
jump harmonic
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A—l
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Completing the round-trip

differentiate

curves

integrate  jump Laplace equation

Darboux derivative

Input:
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D
jump harmonic
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\A__l/ \L——/

integration w/ jumps
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Completing the round-trip

differentiate jump derivative Darboux derivative
/"—\ /——‘\
o D
curves Jun}ﬁ nllilir g;(;mc 1-forms
\A__l/ \L——/

integrate  jump Laplace equation integration w/ jumps

Input:
[
v
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Completing the round-trip

differentiate jump derivative Darboux derivative
/"—\ /—"‘\
o D
curves Jun}ﬁnrftlir g;l‘(;mc 1-forms
\_A_l/ \L/

integrate  jump Laplace equation integration w/ jumps

Input:
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Algorithm summary

e Solve for a harmonic function u with jumps 1.
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Algorithm summary

e Solve for a harmonic function u with jumps 1.

o Compute the harmonic part y of Du.

e Solve a (linear) optimization to obtain the residual function o.

o Solve for the winding number function w with jumps I' — Jv

if surface M is multiply-connected
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Surfaces with boundary

nonbounding

Bounding curves are those congruent to zero

in the relative homology group H,(M, oM).

The rest of the theory follows.
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Non-orientable surfaces
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Non-orientable surfaces

orientable curve
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Non-orientable surfaces

orientable curve non-orientable curve

SRS
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Non-orientable surfaces

orientable curve non-orientable curve

=)
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Non-orientable surfaces

orientable curve non-orientable curve

e &
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Non-orientable surfaces

orientable curve non-orientable curve tangential normal

“2.7
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Non-orientable surfaces

orientable curve non-orientable curve tangential normal

&

On orientable surfaces,
tangential orientation = normal orientation
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Non-orientable surfaces

orientable curve non-orientable curve

e &

53

tangential normal

On orientable surfaces,
tangential orientation = normal orientation

On non-orientable surfaces,
must specify normal orientation




Non-orientable surfaces

orientable curve non-orientable curve tangential normal

On orientable surfaces,
tangential orientation = normal orientation

On non-orientable surfaces,
must specify normal orientation
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Curves & regions

SN
P N
SRS

R
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Curves & regions

["is a 1-chain, i.e. a signed integer per edge.

Regions are 2-chains, signed integers per face.
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Endpoints

The boundary of I' is a 0-chain, (dI'); := —X;;I}

[

rae !
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Endpoints

The boundary of I' is a 0-chain, (dI'); := —X;;I}

I
l I

interior endpoints
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Endpoints

The boundary of I' is a 0-chain, (dI'); := —X;;I}

I
: r

interior endpoints

V := set of mesh vertices that are not interior endpoints

E™ .= set of edges with both points in V*
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Endpoints are singular

Endpoints represent singular points:
There are no corner values compatible with jumps.
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Endpoints are singular

Endpoints represent singular points:
There are no corner values compatible with jumps.

74

+1
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Endpoints are singular

Endpoints represent singular points:
There are no corner values compatible with jumps.

0(x)
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Singular point interpolation




Singular point interpolation

0(x)
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Singular point interpolation
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Singular point interpolation

MifFE+ A f!
/1]' + Ax

f(Ai& Aja Ak) =

O(x picewise-liner
() interpolation of 0
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Singular point interpolation

AifFE+ !

Yo o A o=
J (i Aj, M) Do+
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Solving the jump Laplace equation...




The discrete jump Laplacian :

Build the standard cotan Laplacian on V™

N
.
]

Lﬁ = —Wjj, \V/l] e E”
ZEE* Wij, Yie V*

T o
Lo IS

61




Reduced coordinates

62
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Reduced coordinates :

Value per corner —
one value per vertex!
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1

Reduced coordinates Er

e
@
F
®

\/
g <

A jump harmonic function fis harmonic "up to jumps" A.

Value per corner —
one value per vertex!

Apply change of variables and solve

Lfy=b
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Reduced coordinates

1

® ™ OO

-
®

- T
) ®

A jump harmonic function fis harmonic "up to jumps" A.

Value per corner —
one value per vertex!

Apply change of variables and solve

values per vertex

Lfy=b

62

constant vector encoding
per-corner jumps
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Reduced coordinates

A D
: ® ‘ ®
v J ) /
/ ® @

Value per corner —
one value per vertex!

Designing Quadrangulations
with Discrete Harmonic Forms.
Tong, Alliez, Cohen-Steiner,
Desbrun (2006)

Apply change of variables and solve

values per vertex

Lfy=b

62

constant vector encoding
per-corner jumps
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(1) SOLVE THE JUMP LAPLACE EQUATION FOR U

: 2
l@
MR | o :
& @
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Jump harmonic functions — Derivatives...

&
™ O
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Differentiation




Differentiation




Differentiation

Sl ke

@<




Differentiation :

SO

Jump compatibility condition:

fi] _fiJ:fjl_sz

67



Differentiation :

SO

Darboux derivative: (Df)ij - fkl I A

Jump derivative: (T )i : ka f lj

*subject to curve endpoints or nonmanifold edges &



(2) DIFFERENTIATE U

0,

69



Derivative decomposition...
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Hodge decomposition

w=da+of+y
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Hodge decomposition

0
0 =db6+5f+y

72

A D
® ’ ®
J /
® ’ ®
Lemma, Appendix A

R? R?
s AR =t
| ’/ \
AN
+T ¥ p
= t
{ \ A
da = =

A 4
< «—
©



Hodge decomposition r

Y
< — B

® ™ OO

0
W = d’éf +0 ﬂ +Y Lemma Appendle

Solve Poisson equation: Azﬁ p— dlw AZ r— dl >!<1_1 d;‘r*z

Discrete differential forms for
computational modeling.
Desbrun, Kanso, Tong (2005)
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Hodge decomposition r

¥
< «—

® ™ OO

0
W = d’éf +0 ﬁ +Y Lemma Appendle

Solve Poisson equation: Azﬁ p— dlw AZ r— dl >!<1_1 d;‘r*z

Discrete differential forms for
Get harmonic component: }/ — () — 5 ﬁ computational modeling.

Desbrun, Kanso, Tong (2005)
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(3) HODGE DECOMPOSE @
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-forms — Jump harmonic functions...

1
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Integrating y with jumps

First locally integrate y in each triangle.
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First locally integrate y in each triangle.
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Integrating y with jumps

First locally integrate y in each triangle.
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Integrating y with jumps :

First locally integrate y in each triangle.

ik
Z){ = ()
Uy &= Yij
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Computing the residual function

\/
g =

76
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1

Computing the residual function

=
@
v g
®

Y
- —

® = OO

g <

Applying a change of variable, optimize for | F' | per-face shifts:

miﬂw Z tijl(oijk — 0jir) — sij| + %Zfiﬂ(f’iﬂc = 0ji1) = Sij
o€R ijeEI'NE;int ijEEint\r
linear

st. 0< (Jijk_gfl)_sij <1, Vijel. program
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1

Computing the residual function

=
@
v g
®

Y
- —

® = OO

g <

Applying a change of variable, optimize for | F' | per-face shifts:

miﬂw Z tijl(oijk — 0jir) — sij| + %Zfiﬂ(f’iﬂc = 0ji1) = Sij
o€R ijeEI'NE;int ijEEint\r
linear

st. 0< (Jijk_gfl)_sij <1, Vijel. program

Afterwards, recover solution v.
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(4) COMPUTE THE RESIDUAL FUNCTION
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(5) DECOMPOSE CURVE




Winding number function

Solve jump Laplace equation with jumps I' — v to obtain w.

79



Winding number function

Solve jump Laplace equation with jumps ' — 40 to obtain w.
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Winding number function

Solve jump Laplace equation with jumps ' — 40 to obtain w.

We compute a global shift 7 such that w + 7 is integer along I

round(w + 7)
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Summary




Summary

It's difficult to reason about the
homology class of broken curves.
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Summary
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we process functions dual to curves
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sparse linear
systems

We map from functions back to curves, yielding integer
region labels & identification of nonbounding components.
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Summary

It's difficult to reason about the
homology class of broken curves.

Instead of processing curves directly,
we process functions dual to curves
using de Rham cohomology.

sparse linear
systems

We map from functions back to curves, yielding integer sparse linear
region labels & identification of nonbounding components. program
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RESULTS



RObustness to defects in both I and M

round(u)

holes, scanner noise
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Robustness to defects in both I" and M

. M/ \ XA
region NG S LG

‘.3 nonbounding
IabeIS/ il N \ curves

g

L g D,

highly non-manifold surfaces
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1oNn

insic retriangulati

Intr

Crane (2019)

Integer Coordinates for Intrinsic Geometry Processing. Gillespie, Sharp, Crane (2021)

)

Navigating Intrinsic Triangulations. Sharp, Soliman

N =

)/

Delauna
refinement
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Evaluation

Benchmark setup
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Evaluation

Benchmark setup

(1) Generate random ground-truth regions, take boundaries [sub-levelsets of low-frequency Laplacian eigenfunctions]
(2) Add nonbounding loops [compute homology basis, select random subset]
(3) Break up curves [use random gap & dash size]
(4) Run SWN; compute % of surface area correctly classified [shift w to match ground-truth value in an arbitrary face]

934 total test cases, 451 multiply-connected
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Evaluation

Success rate on nontrivial surfaces

80%
I SWN
o
B O
40% ® urs
=
f
O
"
a 0%
E 80%
S round(u) 5 PSR/GWN
INN O
407, g Much less accurate
: a
- | \ \ &  without homology
0% LJ_J_IZ_J;:‘U“_._,_.:L___ ) PrOCCSSing
0% 5% 10% 15% V.
(o))
% error N



“Failure” cases

Recall shortest-length priors:

-G €
L@

\
©

@)
o
(=

S
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“Failure” cases

Recall shortest-length priors:

\
©

@)
Y
(=

|
&

D
D

$
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“Failure” cases

Recall shortest-length priors:
E) D

- o

~~

N Y7
3 | 4 .5/

input

[ OV S

ground truth regions
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“Failure” cases

Recall shortest-length priors:
/ @
\.

Xs O
Sl .5/

input

[ OV S

ground truth regions

87

)
Y

@
@# =
()

{
&

SWN still gives a valid curve
decomposition!

(no single “right” answer.)




Surface sketching

88



Booleans




Curve decomposition

‘ ‘

(0.225 0.20

less broken
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Curve decomposition

‘ ‘

g {0 '2‘2’ 0 .20

| (0.72; 0.66} | (1,

less broken
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Curve decomposition

g values give SWN’s confidence in nonbounding loops

o1



Region selection — robustness

(mis-)selected
edges

recovered
region
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Region selection — automatic completion
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Region selection — automatic completion

using “ghost loops”
to aid segmentation

round(u)

Input
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Region selection — automatic completion

using “ghost loops”
to aid segmentation

round(u) round(u)

iInput

: p
(thick solid) (thin shell)
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Region selection — automatic completion

using “ghost loops”
to aid segmentation

| incomplete edge
loop selection

round(u)
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LIMITATIONS & FUTURE WORK



Contouring is sometimes counterintuitive
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Contouring is sometimes counterintuitive
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Euclidean winding number also struggles

Jacobson et al. suggest a graphcut algorithm for contouring;:

Robust Inside-Outside Segmentation using Generalized Winding Numbers

Jacobson, Kavan, Sorkine-Hornung (2013)

100



Euclidean winding number also struggles

Jacobson et al. suggest a graphcut algorithm for contouring;:

?

b

.

naive graphcut

contouring

Robust Inside-Outside Segmentation using Generalized Winding Numbers
Jacobson, Kavan, Sorkine-Hornung (2013)
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Euclidean winding number also struggles

Jacobson et al. suggest a graphcut algorithm for contouring:

contoured

:

naive graphcut

\

Still not perfect!

contouring

Robust Inside-Outside Segmentation using Generalized Winding Numbers

Jacobson, Kavan, Sorkine-Hornung (2013)
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Unexpected nonbounding loops

Recall objective function: mm / |the jumps not across I'| + 8/ the jumps across T
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Unexpected nonbounding loops

Recall objective function:

0

r]r\l/linR / |the jumps not across T'| +

101

e/ |the jumps across T'|

encourage jumps
across I’



Unexpected nonbounding loops

Recall objective function: mm / the jumps not across I'| +|e

-
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Unexpected nonbounding loops

Recall objective function: _min / |the jumps not across T'| +|e

e

101

/ |the jumps across I'|

encourage jumps
across I'



Unexpected nonbounding loops

Recall objective function: I/I\I/IinR / |the jumps not across I'| +
5 —

(Y]

e

e/ |the jumps across I'|

Can always adversarially increase a handle's taper.

101

encourage jumps
across I'



Unexpected nonbounding loops

Recall objective function: _min / the jumps not across T'| +|&

.

102

/ |the jumps across I'|

encourage jumps
across I’



Unexpected nonbounding loops

Recall objective function: %inR / |the jumps not across I'| +
5 —

(Y]

8/ |the jumps across I'|

But given a fixed mesh, we will recover the correct solution as gaps — 0

(and appropriate choice of €).

102

encourage jumps
across I'



Unexpected nonbounding loops

Recall objective function:

0

min / |the jumps not across I'| +
: M—>R

103

€ / |the jumps across I'|

encourage jumps
across I’
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Reduced-size linear program

Current implementation simultaneously optimizes both jump locus and jump magnitudes.
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Reduced-size linear program

Current implementation simultaneously optimizes both jump locus and jump magnitudes.

Instead:

1. Use a separate shortest-path 2. Minimize the L' norm of jumps
heuristic (Dijkstra) to complete I'. across connected components.

Integrate y locally within

each connected component

@

Dijkstra-completed curve
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Reduced-size linear program

Current implementation simultaneously optimizes both jump locus and jump magnitudes.

Instead:

1. Use a separate shortest-path 2. Minimize the L' norm of jumps
heuristic (Dijkstra) to complete I'. across connected components.

Integrate y locally within
each connected component

Dijkstra-completed curve
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Reduced-size linear program

Current implementation simultaneously optimizes both jump locus and jump magnitudes.

Instead:

1. Use a separate shortest-path 2. Minimize the L' norm of jumps
heuristic (Dijkstra) to complete I'. across connected components.

Integrate y locally within
each connected component

Dijkstra-completed curve

Number of DOFs: | F| — just a few connected components!
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Approximate solutions, 100x faster
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Approximate solutions, 100x faster

Success rate on nontrivial surfaces

80%
a B SWN, original LP =
=
3 5
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% error 32
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Takeaways

e Classic inside-outside definitions don't
work on surfaces!

e Cohomology — robust homological
geometry processing

e Duality between curves and 1-forms —
use jump harmonic functions to
translate between the two

109

differentiate jump derivative Darboux derivative
/‘j\ /“z')\
1-chains J un;g nll?irg;csmic 1-forms
A w
A =] =

niegrate jump Laplace equation

integration w/ jumps




Fun future directions
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Fun future directions

Subsets of R":

SWN
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Fun future directions

Subsets of R":
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Fun future directions

Subsets of R":

Extension of SWN to higher dimensions,
e.g. periodic domains in 3D.
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Winding numbers are everywhere!

Many mathematical & physical interpretations — see our supplemental for details!

PERSPECTIVES ON WINDING NUMBERS

Nicole Feng, Mark Gillespie, Keenan Crane
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