Winding Numbers on Discrete Surfaces

Nicole Feng, Mark Gillespie, Keenan Crane

Carnegie Mellon University

SIGGRAPH 2023

Problem

Given curves on a surface...

Problem

Given curves on a surface...

Fence bounds a region:

Fence bounds a region:

Fence doesn't bound a region:

Fence bounds a region:

Fence doesn't bound a region:

Fence bounds a region:

Fence doesn't bound a region:

Fence bounds a region:

BOUNDING

Fence doesn't bound a region:

Nonbounding

Can't just throw away nonbounding curves

Curves can enclose points multiple times

Inside/outside of broken curves?

Inside/outside of broken curves?

Input: subset of edges in a triangle mesh

Input: subset of edges in a triangle mesh

components

components

function

Input: subset of edges in a triangle mesh

Outputs:

winding number function

bounding components

nonbounding components

Handles general topology, broken curves

Input: subset of edges in a triangle mesh

Handles general topology, broken curves

Winding numbers are useful for geometry processing!

Winding numbers are useful for geometry processing!

surface reconstruction mesh booleans iterative normal estimation [Xu et al. 2023] [Barill et al. 2018] [Collet et al. 2015] [Collet et al. 2015] [Collet et al. 2015] [Collet et al. 2015]

geometric preprocessing

(Generalized) winding number = solid angle

[Euler 1781; Lagrange 1798; Gauss 1838, Maxwell 1881...]

On Solid Angles.

417.] We have already proved that at any point P the potential due to a magnetic shell is equal to the solid angle subtended by the edge of the shell multiplied by the strength

[Maxwell 1881]

(Generalized) winding number = solid angle

[Euler 1781; Lagrange 1798; Gauss 1838, Maxwell 1881...]

Winding number & solid angle in graphics

[Shimrat 1962; Haines 1994; Goral et al. 1984; Veach & Guibas 1995...]

On Solid Angles.

417.] We have already proved that at any point P the potential due to a magnetic shell is equal to the solid angle subtended by the edge of the shell multiplied by the strength

[Maxwell 1881]

[Haines 1994]

(Generalized) winding number = solid angle

[Euler 1781; Lagrange 1798; Gauss 1838, Maxwell 1881...]

Winding number & solid angle in graphics

[Shimrat 1962; Haines 1994; Goral et al. 1984; Veach & Guibas 1995...]

Winding Turning number on surfaces

[Reinhart 1960, 1963; Chillingworth 1972; Humphries & Johnson 1989; McIntyre & Cairns 1993; Chernov & Rudyak 2009]

On Solid Angles.

417.] We have already proved that at any point P the potential due to a magnetic shell is equal to the solid angle subtended by the edge of the shell multiplied by the strength

[Maxwell 1881]

[Pharr et al. 2018]

Poisson Surface Reconstruction

Generalized Winding Number

[Kazhdan et al. 2006]

[Jacobson et al. 2013]

[Jacobson et al. 2013]

Poisson Surface Reconstruction

Generalized Winding Number

[Kazhdan et al. 2006]

[Jacobson et al. 2013]

[Jacobson et al. 2013]

Poisson Surface Reconstruction

Generalized Winding Number

[Kazhdan et al. 2006]

[Jacobson et al. 2013]

BoolSurf

[Riso et al. 2022]

[Jacobson et al. 2013]

Poisson Surface Reconstruction — Generalized Winding Number

[Kazhdan et al. 2006] [Jacobson et al. 2013]

BoolSurf

[Riso et al. 2022]

Poisson Surface Reconstruction — Generalized Winding Number
[Kazhdan et al. 2006] [Jacobson et al. 2013]

[Riso et al. 2022]

BoolSurf

We include the best of both worlds (and more)

ALGORITHM

Basic idea: treat curves as vector fields

Basic idea: treat curves as vector fields

Basic idea: treat curves as vector fields

Basic idea: treat curves as vector fields

input curves

winding number

$$\Delta u = 0, \quad \text{on } M \setminus \Gamma,$$

$$\Delta u = 0, \quad \text{on } M \setminus \Gamma,$$

harmonic

$$\Delta u = 0, \quad \text{on } M \setminus \Gamma,$$

$$u^+ - u^- = 1,$$
 on Γ ,

harmonic
$$\Delta u = 0$$
, on $M \setminus \Gamma$, jump $u^+ - u^- = 1$, on Γ ,

harmonic
$$\Delta u = 0, \quad \text{on } M \setminus \Gamma,$$

$$u^+ - u^- = 1, \quad \text{on } \Gamma,$$

$$\partial u^+ / \partial n = \partial u^- / \partial n, \quad \text{on } \Gamma.$$

harmonic
$$\Delta u = 0$$
, on $M \setminus \Gamma$, jump $u^+ - u^- = 1$, on Γ , compatibility $\partial u^+/\partial n = \partial u^-/\partial n$, on Γ .

harmonic
$$\Delta u = 0, \quad \text{on } M \setminus \Gamma,$$

$$jump \quad u^+ - u^- = 1, \quad \text{on } \Gamma,$$

$$compatibility \quad \partial u^+ / \partial n = \partial u^- / \partial n, \quad \text{on } \Gamma.$$

$$sparse |V| \times |V| \text{ linear system}$$

If domain has trivial topology:

jump harmonic function

If domain has trivial topology:

If domain has nontrivial topology:

jump harmonic function

If domain has nontrivial topology:

If domain has nontrivial topology:

Differentiating jump harmonic functions

Differentiating jump harmonic functions

$$\Delta u = 0, \quad \text{on } M \setminus \Gamma,$$

$$u^+ - u^- = 1,$$
 compatibility
$$\partial u^+ / \partial n = \partial u^- / \partial n,$$

Differentiating jump harmonic functions

$$\Delta u = 0, \quad \text{on } M \setminus \Gamma,$$

$$u^+ - u^- = 1,$$
 compatibility
$$\partial u^+ / \partial n = \partial u^- / \partial n,$$

$$\omega := \text{derivative of } u$$

What does the derivative tell us?

What does the derivative tell us?

If all curves are **bounding**, the derivative is **zero**.

What does the derivative tell us?

If all curves are **bounding**, the derivative is **zero**.

If some curves are **nonbounding**, the derivative is nonzero and **harmonic**.

sparse $|F| \times |F|$ linear Poisson system

Use harmonic vector field to decompose curve

harmonic field

Use harmonic vector field to decompose curve

Linear program for the residual

penalize jumps

smaller penalty across Γ

$$\min_{v:\ M\to\mathbb{R}}\ \int\ |\text{the jumps not across }\Gamma|\ +\ \varepsilon\int\ |\text{the jumps across }\Gamma|$$

+
$$\varepsilon \int$$
 |the jumps across Γ |

$$\mathcal{D}v = \gamma$$

subject to $\mathcal{D}v = \gamma$ (co)homology constraint

$$0 \le \frac{v^+ - v^-}{u^+ - u^-} \le 1 \quad \text{on } \Gamma \qquad \text{no extra loops}$$

Linear program for the residual

sparse linear program

RESULTS

Input

Input

Input

Nonmanifold meshes

Surface painting

Booleans

Region selection

Surface winding numbers are useful even in 2D

Surface winding numbers are useful even in 2D

Surface winding numbers are useful even in 2D

CONCLUSION

Theory

Theory

Cohomology → robust homological geometry processing

Theory

Cohomology → robust homological geometry processing

Duality between curves and 1-forms → jump harmonic functions to translate between the two

Subsets of \mathbb{R}^n :

Subsets of \mathbb{R}^n :

Subsets of \mathbb{R}^n :

Extension of SWN to higher dimensions, e.g. periodic domains in 3D.

THANKS!

