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Problem

Given curves on a surface...



Problem

Given curves on a surface... ...classify points as inside or outside.
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Not all closed curves have an inside & outside

Fence bounds a region: Fence doesn’t bound a region:

BOUNDING

NONBOUNDING

Can't just throw away
nonbounding curves
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Curves can enclose points multiple times
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Inside/outside of broken curves?
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Surface Winding Numbers (SWN)
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Surface Winding Numbers (SWN)

Input: subset of edges in a triangle mesh

4

Outputs: winding number bounding nonbounding
function components components

sparse Poisson

Handles general
topology, broken
curves




Winding numbers are useful for geometry processing!
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surface reconstruction mesh booleans iterative normal estimation

[Xu et al. 2023]

[Barill et al. 2018] [Hou et al. 2022]

Zhou et al. 2016 :
[Zhou et al. 2016] meshing

[Barill et al. 2018] [Collet et al. 2015]

geometric preprocessing
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[Chi, Song 2021] [Dvorak et al. 2021]
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(Generalized) winding number = solid angle
[Euler 1781; Lagrange 1798; Gauss 1838, Maxwell 1881...]

On Solid Angles.

417.] We have already proved that at any point P the
potential due to a magnetic shell is equal to the solid angle
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(Generalized) winding number = solid angle

[Euler 1781; Lagrange 1798; Gauss 1838, Maxwell 1881...]
[Maxwell 1881]
;=" _a
|' /’
X7 T n Ser
Py 5 _llv/ o /-/" A
///// ¥ /.
-~ 7 || o P
) 7ol o o
AR
@ (!%»

[Pharr et al. 2018]

Winding number & solid angle in graphics

[Shimrat 1962; Haines 1994; Goral et al. 1984; Veach & Guibas 1995...]
[Haines 1994]



History

(Generalized) winding number = solid angle
[Euler 1781; Lagrange 1798; Gauss 1838, Maxwell 1881...]

Winding number & solid angle in graphics
[Shimrat 1962; Haines 1994; Goral et al. 1984; Veach & Guibas 1995...]

-Turning number on surfaces

[Reinhart 1960, 1963; Chillingworth 1972; Humphries & Johnson 1989;

Mcintyre & Cairns 1993; Chernov & Rudyak 2009]

On Solid Angles.
417.] We have already proved that at any point P the

potential due to a magnetic shell is equal to the solid angle
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Related work

Poisson Surface Reconstruction == Generalized Winding Number
[Kazhdan et al. 2006] [Jacobson et al. 2013]

[Jacobson et al. 2013]
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Related work

Poisson Surface Reconstruction == Generalized Winding Number BoolSurf
[Kazhdan et al. 2006] [Jacobson et al. 2013] [Riso et al. 2022]
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[Jacobson et al. 2013]

We include the best of both worlds (and more)
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ALGORITHM



Basic idea: treat curves as vector fields

curves
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curves vector field

.

curve decomposition vector field decomposition



In more detail...
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input curves harmonic function with jumps gradient vector field
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In more detail...

input curves harmonic function with jumps gradient vector field

= ~ | /7
Laplace
equation

Hodge

linear
program
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residual function harmonic vector field

13



In more detail...

input curves harmonic function with jumps gradient vector field

=il ~ (/-

Laplace
equation
Hodge
decomposition
Laplace linear
equation program
— “—

winding number function residual function harmonic vector field
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Why harmonic functions with jumps?
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Why harmonic functions with jumps?

jump harmonic
functions

winding number C solid angle C
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Jump Laplace equation

Au = 0, on M\ T,

The jump problem for the Laplace equation. Krutitskii (2001)
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jump ut—u- = 1, on T,
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The jump problem for the Laplace equation. Krutitskii (2001)



Jump Laplace equation

harmonic Au O, on M \ F,
jump ut—u- = 1, on T,

ou—/on, onT.

compatibility é)u+/8n

u(x)

The jump problem for the Laplace equation. Krutitskii (2001)



Jump Laplace equation

harmonic
jump

compatibility

Au = 0, on M\ T,
ut—u- = 1, on T,
ou"/on = ou /on, onT.

u(x)

sparse | V| X | V|linear system

The jump problem for the Laplace equation. Krutitskii (2001)



If domain has trivial topology:

jump harmonic function
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If domain has trivial topology:

jump harmonic function integer region labels
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If domain has nontrivial topology:

jump harmonic function
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If domain has nontrivial topology:

jump harmonic function
round
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If domain has nontrivial topology:

Not part of the input!

/

jump harmonic function
round

S
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Differentiating jump harmonic functions




Differentiating jump harmonic functions

Au = 0, on M\ T,
ut—u- = 1,
compatibility 8u+/8n = Ju /6‘n,
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Differentiating jump harmonic functions

Au = 0, on M\ T,
ut—u- = 1,
compatibility 8u+/8n = Ju /6‘n,

U « := derivative of u
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What does the derivative tell us?



What does the derivative tell us?

If all curves are bounding,

the derivative is zero.
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What does the derivative tell us?

If all curves are bounding, If some curves are nonbounding,
the derivative is zero. the derivative is nonzero and harmonic.
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If the curve is broken, find closest harmonic field
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If the curve is broken, find closest harmonic field

Hodge decomposition

w=da+0f+y
(Lemma, Appendix A)

y is a harmonic 1-form
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If the curve is broken, find closest harmonic field

Hodge decomposition

w=da+0f+y
(Lemma, Appendix A)

y is a harmonic 1-form

sparse |F'| X | F| linear Poisson system
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Use harmonic vector field to decompose curve

harmonic field



Use harmonic vector field to decompose curve

harmonic field residual function
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Linear program for the residual

min
v: M—R

penalize jumps

smaller penalty across I'

/ |the jumps not across I'

+

8/ Ithe jumps across T’

subject to Do=y

26

(co)homology constraint

onT’ no extra loops




Linear program for the residual

penalize jumps smaller penalty across I'

Find shortest completion that
agrees with the harmonic field

ut —u

sparse linear program
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RESULTS



RObustness to defects in both I' and M
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RObustness to defects in both I and M
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RObustness to defects in both I and M

round
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Nonmanifold meshes
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Surface painting
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Booleans




Region selection

(mis-)selected
edges

recovered
region
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Surface winding numbers are useful even in 2D

input

strokes

NQ



Surface winding numbers are useful even in 2D

Generalized
Winding Numbers

Input
strokes N

Q\,Q

Robust Inside-Outside Segmentation using Generalized Winding Numbers. Jacobson, Kavan, Sorkine-Hornung (2013)



Surface winding numbers are useful even in 2D

Generalized
Winding Numbers ours

Input
strokes N

Q\,Q

Robust Inside-Outside Segmentation using Generalized Winding Numbers. Jacobson, Kavan, Sorkine-Hornung (2013)
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Success rate on nontrivial surfaces
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Performance

Success rate on nontrivial surfaces
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CONCLUSION



Theory



Cohomology — robust homological
geometry processing
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Duality between curves and 1-forms —
jump harmonic functions to translate
between the two

Cohomology — robust homological
geometry processing

differentiate jump derivative Darboux derivative

curves

1-forms

integrate  jump Laplace equation integration w/ jumps
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Fun future directions
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Subsets of R":

SWN
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Fun future directions

Subsets of R":
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Fun future directions

Subsets of R":

Extension of SWN to higher dimensions,
e.g. periodic domains in 3D.
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