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W������N������ ��D������� S�������
(S�����������M�������)

This supplement provides detailed pseudocode (Section A) for the
surface winding number (SWN) method of Feng et al. 2023, and
discusses the homological perspective on this method (Section B).

A PSEUDOCODE
Our pseudocode is expressed via a halfedge mesh data structure
encoding a triangle mesh " = (+ , ⇢, � ), and use ô8 9 to denote the
halfedge from 8 to 9 . Subroutines not de�ned here are described in
the list below; many correspond to standard libraries/data structures.
• I�M�������(", 8) — returns true if 8 is a manifold vertex of" .
• I�B�������(", 8 9 ) — returns true if 8 9 is a boundary edge of" .
• O����������(",ô8 9 ) — returns true if the orientation of halfedge
ô8 9 matches the canonical orientation of edge 8 9 in " , and false
otherwise.

• T���(",ô8 9 ) — returns the twin of halfedgeô8 9 in" .
• P���(",ô8 9 ) — returns the previous halfedge in the face contain-
ing halfedge ô8 9 of" .

• O�������V�����(",ô8 9 ) — returns the vertex : opposite ô8 9 in
face 8 9: of" .

• C������O�(", 8) — returns the set of corners 9:
8 incident on ver-

tex 8 of" .
• E��������O�(", �) — returns the set+ \+ ⇤ of vertices compris-
ing the interior endpoints of a discrete 1-chain � on" .

• I�������V�������(", �) — returns the set of vertices which are
not interior endpoints of the discrete 1-chain � on" .

• O�������H�������O�C����(", 8, �) — for a vertex 8 in " , re-
turns an arbitrary halfedgeô8 9 whose tail is 8 , such that �89 < 0. If 8
is a boundary vertex, instead return the most clockwise halfedge.

• S����P�������S�����������(A, b) — solves a sparse positive semi-
de�nite linear systemAx = b, returning x (and picking an arbitrary
shift if A has constants in its null space).

• S����L�����P������(", ✓, �, Y, B) — solves the linear program in
Equation 11, for a mesh" with edge lengths ✓ , curve �, parameter
Y and shifts B .

Algorithm 1 S������W������N�����(", ✓, \ , �, Y)

Input: A 1-chain � 2 Z |⇢ | , on a mesh " = (+ , ⇢, � ) with edge
lengths ✓ , corner angles \ , and a parameter Y for the linear
program.

Output: The winding number function F de�ned on corners of "
(Section 3.5).

1: 2  C������R������C����������(", �) ù§2.3.1
2: D  S����J���E������(", \ , �, 2) ù§2.4.3, §3.2
3: l  D������D���������(", �,D) ù§2.4.2
4: W  H�������P���(", \ ,l) ù§3.3
5: E̊  I��������L������(",W)
6: B  C������R�������J����(", E̊)
7: f  S����L�����P������(", ✓, �, Y, B) ù§3.4
8: E  R������S�������(", E̊,f)
9: 2̃  S�������J���D���������(", �, E, 2) ù§2.4.1
10: F  S����J���E������(", \ , �, 2̃) ù§3.5
11: returnF

Algorithm 2 C������R������C����������(", �)

Input: A 1-chain � 2 Z |⇢ | on a mesh" = (+ , ⇢, � ).
Output: A function 2 2 Z |⇠ | expressing values at corners relative to

some reference value (Section 2.3.1).
1: 2  0 |⇠ |

2: for 8 2 I�������V�������(", �) do
3: if I�M�������(", 8) = F���� then continue
4:

ô8 90  O�������H�������O�C����(", 8, �)
5:

ô8 9  ô8 90
6: sum 0
7: do
8: if I�B�������(", 8 9) = F���� then
9: :  O�������V�����(",ô8 9 )
10: jump O����������(",ô8 9 ) ? �8 9 : ��8 9
11: sum += jump
12: 2 9:8  sum

13:
ô8 9  T���(", P���(",ô8 9 )) ùnext outgoing halfedge

14: whileô8 9 < ô8 90
15: return 2

Algorithm 3 S����J���E������(", \ , �, 2)

Input: A 1-chain � 2 Z |⇢ | on a mesh " = (+ , ⇢, � ) with corner
angles \ , and reduced coordinates 2 2 R |⇠ | .

Output: A functionD 2 R |⇠ | de�ned on corners of" , whereD solves
Equation 10. Values at corners adjacent to endpoints of �
are left unde�ned, to be interpolated using Equation 4.

1: !  B����L��������(", \ , �)
2: 1  B����J���L������RHS(", \ , �, 2)
3: D0  S����P�������S�����������(!,1)
4: D  0 2 R |⇠ | ùApply shifts to recover D (Section 3.2).
5: for 9:

8 2 ⇠ do D 9:
8  D0 + 2

9:
8

6: return D

Algorithm 4 D������D���������(", �,D)

Input: A 1-chain � 2 Z |⇢ | , and a function D 2 R |⇠ | with integer
jumps across edges of a mesh" = (+ , ⇢, � ).

Output: The Darboux derivative l 2 R |⇢ | of D, as a discrete 1-form
on edges of" (Section 2.4.2).

1: l  0 2 R |⇢ |
2: for 8 9 2 ⇢ do
3: if 8 2 E��������O�(", �) or 9 2 E��������O�(", �)

then
4: continue
5: :  O�������V�����(",ô8 9 )

6: l89  D:89 � D
9:
8

7: return l

Algorithm 5 B����L��������(", \ , �)

Input: A 1-chain � 2 Z |⇢ | on a mesh " = (+ , ⇢, � ) with corner
angles \ .
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Output: The operator ! 2 R |+ ⇤ |⇥ |+ ⇤ | of Equation 10.
1: !  0 2 R |+

⇤
|⇥ |+ ⇤ | ùinitialize empty sparse matrix

2: for ?@A 2 � do
3: for 8 9: 2 C(?@A ) do ùC: circular shifts
4: if 8 2 E��������O�(", �) or 9 2 E��������O�(", �)

then
5: continue
6: !88 , !9 9 += 1

2 cot(\
89
:
)

7: !89 , !98 �= 1
2 cot(\

89
:
)

8: return !

Algorithm 6 B����J���L������RHS(", \ , �, 2)

Input: A 1-chain � 2 Z |⇢ | on a mesh " = (+ , ⇢, � ) with corner
angles \ , and reduced coordinates 2 2 R |⇠ | (Section 2.3.1).

Output: The vector 1 2 R |+ ⇤ | in Equation 10.
1: 1  0 2 R |+

⇤
|

2: for 8 2 I�������V�������(", �) do
3: for 9:

8 2 C������O�(", 8) and 9,: 8 E��������O�(", �)
do

4: 18 �= 1
2 cot(\

89
:
) · 2 9:8

5: 1 9 += 1
2 cot(\

89
:
) · 2 9:8

6: 18 �= 1
2 cot(\

:8
9 ) · 2 9:8

7: 1: += 1
2 cot(\

:8
9 ) · 2 9:8

8: return 1

Algorithm 7 H�������C��������(", \ ,l)

Input: A co-closed 1-form l 2 R |⇢ | on a mesh" = (+ , ⇢, � ) with
corner angles \ .

Output: A harmonic 1-form W 2 R |⇢ | .
1: 31  B����O��F���E�������D���������(")

2: ⇤1  B����O��F���H����S���(", \ )
3: eV  S����P�������S�����������(31 ⇤�11 3)1 ,31l)

4: XV  ⇤�11 3)1
eV

5: W  l � XV
6: return W

Algorithm 8 S�������J���D���������(", �, E, 2)

Input: A 1-chain � 2 Z |⇢ | on a mesh" = (+ , ⇢, � ), residual func-
tion E 2 R |⇠ | , and reduced coordinates 2 2 R |⇠ | associated
with �.

Output: Updated reduced coordinates 2̃ encoding new jump con-
straints for the jump Laplace equation (Section 3.5).

1: for 8 2 I�������V�������(", �) do
2: if I�M�������(", 8) = F���� then continue
3: for 9:

8 2 C������O�(", 8) and 9,: 8 E��������O�(", �)
do

4: if I�B�������(", 8 9) then continue
5: ✓  O�������V�����(",T���(",ô8 9 ))

6: 2̃ 9:8 = 2 9:8 � (E 9:8 � E
✓ 9
8 )

7: return 2̃

Algorithm 9 B����O��F���E�������D���������(")

Input: A mesh" = (+ , ⇢, � ).
Output: A sparse matrix 31 2 Z |� |⇥ |⇢ | representing the discrete

exterior derivative on 1-forms.
1: 31  0 2 Z |� |⇥ |⇢ | ùinitialize empty sparse matrix
2: for ?@A 2 � do
3: for 8 9: 2 C(?@A ) do ùC: circular shifts
4: (31)?@A ,89  O����������(",ô8 9 ) ? 1 : �1
5: return 31

Algorithm 10 B����O��F���H����S���(", \ )

Input: A mesh" = (+ , ⇢, � ) with corner angles \ .
Output: A sparse diagonal matrix ⇤1 2 Z |� |⇥ |⇢ | representing the

Hodge star acting on discrete 1-forms.
1: ⇤1  0 2 Z |⇢ |⇥ |⇢ | ùinitialize empty sparse matrix
2: for ?@A 2 � do
3: for 8 9: 2 C(?@A ) do ùC: circular shifts
4: (⇤1)89,89 += 1

2 cot\
89
:

5: return ⇤1

Algorithm 11 I��������L������(",W)

Input: A harmonic 1-form W 2 R |⇢ | on a mesh" = (+ , ⇢, � ).
Output: Corner values E̊ 9:8 integrating W in each triangle of" .
1: for 8 9: 2 � do
2: 6ô

8 9  O����������(", ô8 9 ) ? W8 9 : �W8 9
3: 6ô

9:  O����������(", ô9:) ? W 9: : �W 9:
4: E̊ 9:8  0
5: E̊:89  6ô

8 9

6: E̊8 9
:
 6ô

8 9 + 6ô
9:

7: return E̊

Algorithm 12 C������R�������J����(", E̊)

Input: A value E̊ 9:8 per corner of a mesh" = (+ , ⇢, � ).
Output: Values B 2 R |⇢ | that give the jump between locally inte-

grated values across each edge of" .
1: B  0 2 R |⇢ | ùinitialize zero vector
2: for 8 9 2 ⇢ and I�B�������(", 8 9) = F���� do
3: B8 9  E̊ 9:8 � E̊

; 9
8

4: return B

Algorithm 13 R������S�������(", E̊,f)

Input: A value E̊ 9:8 per corner of a mesh " = (+ , ⇢, � ), and per-
triangle shifts f 2 R |� | .

Output: A value E 9:8 per corner describing the residual function.
1: for 9:

8 2 ⇠ do E 9:8  E̊ 9:8 + f8 9:

2: return E
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B HOMOLOGICAL PERSPECTIVE
Here we discuss the homological perspective on SWN, starting
with the case of closed, oriented surfaces (B.1) before proceeding to
surfaces with boundary (B.2) and nonorientable surfaces (B.3). The
basic tools are the �rst homology group �1 (") and cohomology
group �1

(") of the surface " , which provide dual descriptions
of its topology. Throughout we assume that " is manifold: while
we �nd that SWN works on nonmanifold meshes in practice, the
duality theorems formally apply only to manifolds.

B.1 Overview of the Homological Picture
Homology is the theory of boundaries. A closed curve � on a surface
" is said to be nullhomologous if � is the boundary of a region. Con-
versely, the homology group �1 (") describes loops which are not
region boundaries. Munkres [1984, Chapters 1 & 5] gives a detailed
introduction to homology and the dual theory of cohomology.
The connection to SWN is simplest when � is a closed curve

on a closed, oriented surface " . In this case, the 1-form W = DD
computed in Section 3.3—known as the Poincaré dual of �—encodes
�’s homology class. Formally, Poincaré duality provides a canonical
isomorphismi : �1 (") ! �1

(") [Munkres 1984, §65]. Concretely,
this map provides a harmonic 1-form i (�) such that for any loop [,
the integral

Ø
[ W counts the signed number of intersections between

[ and � [Gri�ths and Harris 2014, p.56]. Two closed curves �1
and �2 map to the same harmonic 1-form if and only if the curves
are homologous. Hence, any jump harmonic function integrating
W = i (�)—e.g. the function E in Section 3.4—must jump across a
chain homologous to �. Consequently, the linear program used to
compute E minimizes the ✓1 norm of the jump 6 = JE subject to
the constraint that 6 is homologous to �. In this case, one could
avoid cohomology and directly solve an optimal homologous chain
problem à la Dey et al. [2010]. However, harmonic 1-forms are
essential in our generalization to broken curves.
When � is broken, it lacks a well-de�ned homology class. Con-

sequently, the 1-form DD is no longer harmonic for broken curves.
Nonetheless, we can take the harmonic component W of DD, which
we interpret as an “approximate homology class” for �. SWN then
searches for the optimal nonbounding loop 6 = �E within this ho-
mology class. Among other things, the homology class constraint
ensures that 6 is always a closed loop, even when � is broken.

B.2 Relative Homology for Surfaces with Boundary
To make sense of our algorithm on surfaces with
boundary—and in particular to justify Equation 12—
we need to extend the discussion of homology to
include relative homology. When" has no boundary,
nullhomologous curves are precisely the curves en-
closing regions, and nonbounding loops are characterized by the
usual absolute homology group �1 ("). However, the situation is
more complicated if" has a boundary. For instance, an annulus has
a single homology generator: a loop � wrapping around the middle.
Though � separates the annulus into two components, it is not itself
the boundary of any region since each component’s boundary also
includes a circle from the annulus’ boundary.

Instead, nonbounding loops on a surface with
boundary are described by the relative homology
group �1 (", m"). On an annulus, e.g., this group is
generated by a curve connecting the boundary cir-
cles. Formally, it is the �rst homology group of "
after collapsing m" to a point [Munkres 1984, §9].
E.g. collapsing the boundary of the annulus yields a
sphere with two points identi�ed, whose homology
generator corresponds to the nonbounding curve on the annulus.

Relative Cohomology. Similarly, a surface with boundary has both
absolute and relative cohomology groups. The absolute group�1

(")

consists of harmonic 1-forms tangent to the boundary, while the
relative group �1

(", m") consists of harmonic 1-forms normal to
the boundary [Poelke and Polthier 2016]. Lefschetz duality provides
a map between �1 (", m") and �1

(") [Munkres 1984, §70]. On
an annulus, e.g., the relative homology generator
maps to a 1-form circulating around the center. Since
nonbounding loops correspond to the relative homol-
ogy group, our dual harmonic 1-forms are members
of �1

(") and must thus lie tangent to m" .

Hodge Decomposition. On manifolds with boundary, one can de-
compose a :-form l using the Hodge-Friedrichs-Morrey decompo-
sition [Schwarz 2006, Corollary 2.4.9]:

⌦: = 3⌦:�1
⇡ � X⌦:+1

# �

⇣
H

:
\ 3⌦:�1

⌘
�H

:
# (12)

= 3⌦:�1
⇡ � X⌦:+1

# �

⇣
H

:
\ X⌦:+1

⌘
�H

:
⇡ (13)

Here a subscript ⇡ (for Dirichlet) denotes a space of forms with zero
tangential component on m" , a subscript # (for Neumann) denotes
a space of forms with zero normal component on m" , andH denotes
the space of harmonic �elds, (i.e. :-forms satisfying 3W = XW = 0).
To extract a tangential harmonic 1-form, we apply the �rst de-

composition (Equation 12). Multiplying both sides by 3 and X yields
a pair of equations determining the tangential harmonic component
of a 1-form l . A short calculation shows that these equations are
the standard equations solved to perform Hodge decomposition on
closed surfaces with zero-Neumann conditions on the boundary.

B.3 Local Coe�icients for Nonorientable Surfaces
As discussed in Section 3.7, our algorithm also extends to nonori-
entable surfaces so long as one explicitly provides curve normals
which specify which direction the surface winding number should
jump across the curve. Such a choice of normals makes � into an
element of the �rst homology group with local coe�cients in the
sense of Hatcher [2002, Section 3.H], which is Poincaré dual to the
ordinary �rst cohomology group [Hatcher 2002, Theorem 3H.6].

Hodge Decomposition. Our discussion of Hodge decomposition
used the codi�erential X := ⇤3⇤, which may look ill-de�ned on
nonorientable surfaces: the de�nition uses ⇤ which depends on the
orientation of " . However, reversing orientation multiplies ⇤ by
�1, so because X uses ⇤ twice the signs cancel and X remains well-
de�ned on nonorientable surfaces. Hence, Hodge decomposition
still works via the usual linear systems.
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