THESIS PROPOSAL
Robust Algorithms for Winding Numbers
and Signed Distance

Nicole Feng

October 2025

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Thesis Committee:
Keenan Crane (CMU), Chair
Nancy Pollard (CMU)
Ioannis Gkioulekas (CMU)
Christopher Wojtan (ISTA)

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright © 2025 Nicole Feng






Abstract

This thesis presents robust algorithms for inside-outside computation and curve
reconstruction (via winding numbers) and signed distance computation. These algo-
rithms make geometric inferences from imperfect data, where such imperfect data
includes noisy, incomplete, or inaccurate observations or representations of shapes
that result from either acquisition or authoring of geometry. A theme is that robust-
ness and versatility can often be achieved by processing smooth, globally-defined
functions encoding the geometry of interest, that are more amenable to robust
computation than the original, defective curve or surface. For both inside-outside
and signed distance computation we can unlock further control over geometry and
topology by processing higher-order derivatives of these functions. In many cases,
we can also re-cast our algorithms, formulated in terms of smooth functions, onto
different discretizations and geometric data structures. Another theme is that robust
reconstruction and robust signed distance computation are closely related problems;
towards this end, we provide a formalization of their relationship that justifies the
design of our algorithms.
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CHAPTER 1

Introduction

From natural phenomena (material structure, plant growth, geological formation, etc.) to human-
generated data (manufactured objects, art, digital assets), our lives are defined by geometry.
Algorithms for geometric problems enable modeling, simulation, and performance analysis,
and thus are key to successfully manipulating the world around us; these algorithms drive
technological progress across numerous domains including engineering, animation, finite-
element analysis, and other design-based industries.

In general, problems involving geometry can be hard to solve, not necessarily because
the problem itself is difficult to model or understand, but because of the difficulty in doing
computation with geometry. Virtually all geometric data suffers quality issues, due to imperfect
acquisition, reconstruction, or modeling, and unfortunately standard geometric operations are
often built on assumptions that break down as soon as the input geometry fails to satisfy “ideal”
standards. In practice, geometry can and does suffer from missing data, noise, self-intersections,
non-manifold features, and myriad other defects. These low-level defects are unpredictable and
easily frustrate higher-level design and optimization tasks such as reliable physics analysis or
machine learning pipelines that demand perfect, clean data. Explicit repair of data is possible
but time-consuming and tedious, with no guarantees of perfection; we instead need algorithms
that remain stable under perturbations in their input and hence allow direct computation of
geometric quantities from defective data, which requires answering fundamental questions
about geometry.

In other words, we need robust geometry processing: we need versatile algorithms that
work reliably across varying degrees of quality in their input. This thesis addresses the robust
computation of two fundamental geometric quantities, inside-outside and signed distance, that
underlie key problems in design and engineering.

* Chapter 3 addresses the question of what it means to be “inside” or “outside” a curve or
surface, and uses winding numbers to compute inside-outside on general surface domains
of arbitrary topology.

* Chapter 4 extends the theory underpinning winding numbers to signed distance computa-
tion, which outlines fundamental tradeoffs to be made by robust algorithms for signed
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distance.

* Chapter 5 describes a robust algorithm for computing signed distance to defective curves
and surfaces in 2D and 3D.

Finally, Chapter 6 proposes a project extending robust signed distance computation to
pointwise queries, and my planned timeline for graduation.



CHAPTER 2

Background

This chapter presents mathematical background for understanding inside-outside classification
and signed distance computation, the two fundamental geometric quantities that form the core
of this thesis.

2.1 Notation

We use | - | and (-, -) to denote the standard Euclidean norm and inner product for vectors in
R? and R3. We use J : R? — R?; (x, y) — (-y,x) to denote a quarter turn in the counter-
clockwise direction. For any two vectors u,o € R?, we define a scalar-valued cross product
uXo:= u102 — uy07; note that (Ju,v) = u X v. For any function f(t) of a single parameter ¢, we
let £(t) := T 4 £(t). We use A to denote the negative- semldeﬁmte La}olace—Beltmmz operator on
M, which locally behaves like the ordinary Laplace operator a 7+ 37 Afunctionu : M — Ris
harmonic if it is in the kernel of the Laplacian, i.e., if Au =

Throughout we use Q to denote a curve or surface, though we also use I'
to specifically denote a 1D curve. We also frequently discuss the boundaries of @ R A
regions. Intuitively, the boundary dR of a 3D region R is the oriented surface 4R
enclosing R, and may have multiple components. Similarly, the boundary of a O
surface is the oriented curve enclosing the surface, and the boundary of a curve OR=A+B
is its set of oriented endpoints. We call Q closed if 9Q = @.

One-sided limits. We make frequent use of signed functions whose
value depends on from which side we approach a given curve or surface
Q. We denote one-sided limits of such functions as follows. On R?, we let
x* = lims_,o x + sn(x) denote a point on x € Q as approached from the
positive or negative side of Q, where n(x) is the outward-pointing normal
of @ c R? at x that points from the negative to positive side of Q (see inset). We then denote the
corresponding one-sided limits of a function u(x) as u*(x) := u (x*) := lims_o u (x £ sn(x)).
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For functions defined on smooth manifolds (Section 2.2), an analogous definition holds where
the limits are instead taken under an appropriate chart that maps from the surface to R%.

setting as a triangle mesh M = (V, E, F), with no restrictions on connectivity; y

we use C for the set of all triangle corners, and oM to denote the boundary of

M. We denote k-simplices by (k + 1)-tuples of vertex indices, i.e., vertices i € V,

edges ij € E, and faces ijk € F. Likewise, we denote the corner of triangle ijk *

at vertex i as /& € C. These indices are also used to express quantities stored

on mesh elements — for instance, corner angles are denoted by a{k. We use

| - | to denote the volume of a simplex — for example, |ij| is an edge length and |ijk| is a triangle
area. For brevity, we often assume that any interior, manifold, oriented edge ij is contained in
two triangles labeled ijk, jil, where k and [ sit to the left and right of ij, resp.

We use < and > to indicate summation over all elements contained by or containing another
element (resp.). For instance 2. ;; sums over all triangles ijk containing edge ij. For each edge
ij, we let e;; be a vector parallel to the edge with arbitrary (but fixed) orientation, and magnitude
equal to the edge length. We let el.j.' be the 90° rotation of e;; in the counter-clockwise direction,

Triangle meshes. We often represent a 2D surface domain in the discrete , &(
I
1

and use éj;, éij for the corresponding unit vectors.

2.2 Preliminaries

This section establishes the differential geometric foundations necessary for understanding
the geometry processing algorithms developed in subsequent chapters. We focus on the key
concepts of smooth manifolds and differential forms, which enable our function-based approach
to geometry processing. Here we give only a high-level overview of the concepts needed to
understand the algorithms in this thesis; for thorough treatment of these concepts, see Lee
[2012] or do Carmo [1992].

Manifolds. Manifolds are topological spaces that locally look like R". In particular, a topologi-
cal manifold M has enough topological structure to allow uniqueness of limits and a meaningful
notion of function continuity; M is also “locally Euclidean” in the sense that each point p € M
lies in an open subset V. M homeomorphic to an open subset of V' C R", i.e. there exists a
continuous bijection ¢ : U — V with continuous inverse.

These homeomorphisms are called coordinate charts and let one locally analyze manifolds
by comparing pieces of M with pieces of the more well-understood space R". For example,
one might think to call a function f : M — R differentiable at p € M if its image under a
coordinate chart is differentiable in R". For purely topological manifolds, however, this notion of
differentiability depends on the particular choice of coordinate chart. Thus we consider smooth
manifolds, topological manifolds that can be covered with a collection of charts such that any two
charts are smoothly compatible: that is, for any two charts ¢, ¢g such that ¢, (U,) N@s(Up) # @,
the transition map 1/~ o ¢ o ¢! is a smooth diffeomorphism. This compatibility ensures that

4
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the notion of differentiability is well-defined, in the sense that the differentiability of functions
does not depend on the choice of coordinate chart, so calculus can be done consistently on the
manifold.

Tangent spaces and vector fields. Intuitively, tangent vectors are vectors that “lie flat” along
a smooth manifold M. In more detail, each point p € M can be associated with a tangent space
T,M, an n-dimensional vector space isomorphic to R" that captures all possible directions of
motion through p. Tangent vectors can be characterized, for example, as equivalence classes of
smooth curves through p, where two curves yy, y, are equivalent if they have the same tangent
vectors at a given point when pulled back to pieces of the plane. Because the smooth structure
of M means derivatives of curves on M are well-defined, we can define tangent vectors on M.

The tangent bundle TM of M takes a union of all tangent spaces on M, and has a smooth
structure inherited from the smooth structure of M. A smooth vector field can then be defined as
a section of TM, meaning a smooth map X : M — TM, where X assigns to each pointp € M a
tangent vector X(p) € T,M such that the assignment varies smoothly.

Differential forms. Differential forms provide a framework for integration on manifolds,
and are built up of objects called covectors that act as “meter sticks” with which to measure the
signed length of tangent vectors along certain directions.

In more detail, given an n-dimensional vector space V, a covector is a linear function w :
V — R, and the space of all covectors forms a dual space V* to V. Each point p € M of a smooth
manifold can be associated with a cotangent space TyM = (T,M)* wihch consists of linear
functionals T,M — R, and the collection of all cotangent spaces on M is called the cotangent
bundle T*M; a smooth section of T*M is called a smooth covectorﬁ%ld or I-form. A 1-form w
can be used to integrate along a curve y : [a,b] — M using fy W= fa wy () (Y'(1)) dt.

More generally, one can define (covariant) k-tensors, multilinear functions that take in k
vectors, and define k-covectors as alternating k-tensors; “alternating” means the k-tensor is
negated when two arguments are swapped. At each p € M, one can consider the space A* (T, M)
of all k-tangent covectors, and consider a union of all such spaces to form the vector bundle
AK(T*M) = L pem Ak(T;M) . a section of AX(T*M) is called a (differential) k-form. In words, a
k-form, evaluated at p € M, measures signed k-dimensional volumes in k-dimensional linear
subspaces of T, M.

The integration of differential forms on M also depends on the orientability of M: the manifold
M is orientable if it has an atlas of coordinate charts whose transition maps all have positive
Jacobian determinant. Classic examples of non-orientable manifolds include the Mdbius strip
and Klein bottle, where attempting to define a consistent orientation while traversing certain
loops leads to contradictions.

The exterior derivative d acts on k-forms to produce (k + 1)-forms, and generalizes the
differential of a function (0-form). On a smooth manifold M, the exterior derivative is the unique
differential operator satisfying several fundamental properties, such as linearity over R and
d o d = 0. The latter property, nilpotency, gives rise to the distinction between closed forms
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(dw = 0) and exact forms (v = da), which is central to de Rham cohomology (Section 2.3.2).
The fundamental relationship between differentiation and integration is captured by Stokes’
theorem: for an oriented smooth n-manifold M with boundary and (n — 1)-form «w with compact

support, faM W = fM do.

Hodge decomposition. Throughout we make use of Hodge decomposition acting on 1-forms.
In particular, any 1-form w on a closed Riemannian manifold can be uniquely decomposed into
a sum of an exact component da, coexact component §f, and a harmonic component y,

w=da+35f+y.

On manifolds with boundary, the Hodge-Friedrichs-Morrey decomposition applies [Schwarz 2006].
As detailed in Crane et al. [2013a, Chapter 8], this decomposition can be computed by solving a
pair of Poisson equations

A()O( = 5160 and Azﬁ = dlw, (21)

where Ag = *; 1dg %1 do and Ay 1= d; *1'1 le*z are the discrete 0- and 2-form Laplacians, resp.,
with their usual zero-Neumann boundary conditions.

Hodge decomposition is a generalization of Helmholtz decomposition from vector calculus,
and implies that solving for the scalar potential f that gives the best least-squares approximation
of a given vector field X,

f == argmin,, |[Vf' - X|7,

has a residual Vf — X that consists of a most a coexact plus a harmonic component.

Discrete differential forms. On triangle meshes, we use discrete exterior calculus to represent
differential forms on simplicial complexes [Desbrun et al. 2006; Crane et al. 2013a]. On triangle
meshes, k-forms are represented as values assigned to k-dimensional mesh elements: 0-forms
correspond to values on vertices, 1-forms on edges, and 2-forms on faces. The discrete exterior
derivative di maps discrete k-forms to discrete (k + 1)-forms, and can be represented as a sparse
matrix equal to the transpose of the boundary operator. The discrete Hodge star xj takes k-
forms to (n — k)-forms, incorporating geometric information arising from edge lengths. These
discrete operators preserve the fundamental structure of their smooth counterparts: for example,
dr41 © di = 0, and discrete versions of Stokes’ theorem hold.

For general, possibly nonmanifold triangle meshes, we follow Sharp et al.
[2019a] and define the discrete Hodge star operators by taking volume ra-
tios involving all incident elements (see inset), yielding diagonal matrices
with entries (%q); := %ZijkeF lijk| for all i € V, (x1); == wy for all ij € E,
where w;; = % 2ijker cot o:]ij are cotan weights [MacNeal 1949, Section 3.2], and
(x2)ijk = 1/]ijk| for all ijk € F. Otherwise, we use the standard discrete exterior

derivative matrices dy; the discrete codifferential is then & := *,:ild,{_l*k.
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2.3 The inside and outside of curves and surfaces

Intuitively, closed objects — such as a capped bottle, soccer ball, or sealed exterior
building — separate space into an “inside” region comprised of all the points

which cannot be connected to the “outside” without intersecting the object.

This intuition can be formalized, for instance using the Jordan curve theorem

which says that every simple closed curve in the plane — that is, every
non-self-intersecting continuous loop — indeed decomposes R? into two

connected components, a region R bounded by the curve, called the “interior”, and its unbounded
complement R? \ R, called the “exterior” of the curve. The Jordan-Brouwer separation theorem
gives an analogous statement in higher dimensions.

Determing the interior (or equivalently, determining the exterior) of a curve or surface is a
fundamental problem in computer vision and computer graphics. For example, surface recon-
struction is a perennial task that aims to infer, or reconstruct, the surface from which a collection
of discrete points or polygons were sampled, whose output is a well-defined interior and exterior
of a shape [Berger et al. 2014]. Other applications that depend on reliable interior/exterior
computation include motion planning, computer-aided design, geographic information systems.

The interior and exterior of a shape is often represented as a scalar function, such as an
occupancy function, which typically has value 1 inside the shape and 0 outside. In Section 2.3.3
and Chapter 3, we consider the more general winding number function, which gives not just a
binary inside/outside classification, but rather an integer-valued function that counts how many
times a curve or surface encloses a given point.

2.3.1 Curve orientations

For a surface embedded in RY, we can specify its orientation as a choice of a 5, ,
continuously-varying surface normal n(x) at every point. For curves, one can %, x" %

. . . . . . . . « ) « . . 2, \&
also specify orientation via normal direction, picking “left” and “right” sides 7 ™ &

of the curve. We can also orient along the curve’s tangent direction, picking gzr;if:;';'] Or?e‘:g;'on
forward and backward directions (inset). For curves on a oriented surface, the

two notions of orientation are equivalent: the normal of the curve, and hence the left/right sides,
is usually defined via a 90° counterclockwise rotation of the tangent.

However, if M is non-orientable, then one cannot pick a consistent counter-
clockwise direction at all points of the surface, and the two types of orientation
are not equivalent: for example, the inset shows a curve on a Mébius strip that
cannot be given a consistent normal orientation, but can be given a consistent
tangent orientation.
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2.3.2 Homology & cohomology

On domains besides R¢, a closed curve or surface may
not necessarily be the boundary of a well-defined region
(inset). The failure of a curve to be a boundary of a
region can be studied using homology and cohomology
(Munkres [1984, Chs. 1 & 5]).

Fig. 2.1: Is the point p “inside” or “outside”
the curve I'? On surfaces, this question
does not always have a meaningful an-
swer.

Homology. On orientable surfaces without boundary, two closed curves I} and I
I, are homologous if they form the boundary of a region R, meaning if I; — I'; = dR

(inset). A curve that is the boundary of a region is called nullhomologous. In the

plane, all closed curves are nullhomologous and hence have well-defined insides

and outsides. However, on surfaces or even in subsets of the plane, there may be closed curves
which are not the boundary of any region; that is, these curves are congruent to zero in the
homology group H;(M) = ker(9;) \ Im(d;). For clarity, we call a closed curve bounding if it is
nullhomologous, and nonbounding if it is non-nullhomologous (a.k.a. a separating cycle.) Even if
individual loops do not bound regions, however, they can still conspire to define a meaningful
partition — see the right inset, which reproduces an example from Riso et al. [2022, Figure 4].

&g}/ class of T is the set of all curves homologous to I'. A

set of homology generators for M is a set of closed curves {5;} from which
we can construct a curve in every homology class. On a closed surface
of genus g there are 2g homology generators, which can be organized in
pairs around each handle (inset).

Cohomology. Alternatively, we can study curves and their bounding properties by studying
1-forms dual to the curves. In de Rham cohomology, curves I' are replaced by 1-forms @, and the
boundary operator is replaced by the exterior derivative d. We say that a 1-form w is closed if
dw = 0. Two closed 1-forms w1, w, are said to be cohomologous if w; — w; = da, mirroring the
condition for curves. Whereas the Poincaré lemma states that all 1-forms in R? are cohomologous
to zero, there can be multiple cohomology classes on surfaces. A set of cohomology generators
for M is a collection of 1-forms {w;} allowing us to represent the cohomology class of any exact
1-form ¢ via a sum of generators. On a closed surface of genus g, there are 2g cohomology
generators, matching the number of homology generators.

A 1-form w can be paired with a curve I' via integration, yielding a value fr w.
Using this pairing, a 1-form w is dual to a closed curve T if integration against
w counts intersections with T, i.e. if /r w is the signed number of intersections
between I" and I'” for any closed I".

Cohomology is closely related to the theory of harmonic functions and differential forms. In
particular, there is a unique harmonic form in each cohomology class, allowing us to represent
cohomology classes concretely using harmonic forms. We make use of this duality in Chapter 3.
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Relative homology & cohomology. So far we have only discussed surfaces M with no
boundary, in which case nonbounding (non-nullhomologous) curves are categorized by the
absolute homology group H1(Q) [Erickson and Whittlesey 2005].

On surfaces with boundary, however, curves may be nonbounding in the sense
that they separate the domain into two components, but cannot be represented as .
the boundary of some region in an absolute sense. For instance, the annulus has
a single homology generator: a loop I wrapping around the hole in the middle.
While I' separates the annulus into two components, it is not the boundary of any region of
the annulus since the boundary of e.g. the inside component includes the inner circle of the
annulus’ boundary in addition to I'. On surfaces with boundary, nonseparating cycles are instead
described by the relative homology group H; (M, dM), whose elements are closed loops in the
space obtained by collapsing all of M to a single point [Munkres 1984, §9].

On surfaces with boundary, one must also distinguish between absolute and
relative cohomology. The absolute cohomology group H'(Q) consists of harmonic .
1-forms tangent to the boundary, whereas the relative cohomology group H'(Q, 9Q)
consists of harmonic 1-forms normal to the boundary [Poelke and Polthier 2016]. r
The dual of a relative homology generator is an absolute cohomology generator and vice versa;
for example, the dual of the nonseparating relative homology generator is the 1-form which
circulates around the annulus, tangent to the boundary (inset).

2.3.3 Winding numbers

Winding numbers are a basic concept from differential geometry that
give a natural extension of the binary notion of inside-outside to more
than two regions [Do Carmo 2016, Section 5.7]. In the plane, winding
number is a piecewise constant function that jumps by +1 as one
crosses the curve from the right (Figure 2.2, inset). The classic winding
number is a special case of the signed solid angle function, which is itself a particular harmonic
function, i.e.,

winding number C solid angle C harmonic functions.

Connections between winding numbers, solid angles, and harmonic functions have long appeared
in mathematics, physics, and scientific computing [Binysh and Alexander 2018]. Both Euler
[1781] and Lagrange [1798] give formulas for the solid angle of a triangle; Gauss [1838, Sections
37-38] notes the relationship of solid angle to magnetic potential; Maxwell [1881, Articles 409-11,
417-21] further makes connections to jump conditions. Methods for approximating solid angles
also play an integral role in boundary element methods (BEM) for the Laplace equation [Ning
et al. 2010].

A0 HEN r—— In computer graphics, winding numbers were
winding number first applied to point-in-polygon queries [Shimrat
1962; Haines 1994a]. Solid angle also plays a key role
in rendering, e.g., for finite element radiosity [Goral

Fig. 2.2: For curves I in the plane, the winding 9

number function wr(p) gives the number of
times the curve I wraps around any given

point p.
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et al. 1984] or importance sampling for direct illu-

mination [Veach and Guibas 1995, Section 2.1]. In
geometry processing, the utility of the solid angle function for broken geometry has been
rediscovered twice, via both Poisson surface reconstruction (PSR) [Kazhdan et al. 2006] and the
generalized winding number (GWN) [Jacobson et al. 2013]. These methods are in turn key com-
ponents of a wide variety of applications [Hu et al. 2018; Zhou et al. 2016; Chi and Song 2021;
Miiller et al. 2021; Dvorak et al. 2022; Collet et al. 2015; Chang et al. 2017].

Owing to their rich history and prevalence in math and physics, winding numbers can be
characterized through several different perspectives [Feng et al. 2023]. These perspectives do
not, however, have a standard extension to curves on surfaces, due to the possible presence
of nonbounding loops (Section 2.3.2). Several authors have instead considered generalizations
of turning number on surfaces, a quantity distinct from winding number despite the historical
confusion of terminology [Reinhart 1960, 1963; Chillingworth 1972; Humphries and Johnson
1989; McIntyre and Cairns 1993]. McIntyre and Cairns [1993, Lemma 2] does describe a function
that behaves like the winding number for bounding curves, but for nonbounding curves must
introduce arbitrary discontinuities to keep this function piecewise constant, and Chernov and
Rudyak [2009] define a so-called affine winding number useful only for curves within a common
homotopy class. More recently, Riso et al. [2022] give a method for computing winding numbers
but only on perfectly closed curves already partitioned into distinct loops. In Chapter 3, we
give an algorithm that gives a well-behaved generalization of winding number, given minimal
structure on the input curves.

2.4 Geodesic distance

Distance computation on curved spaces requires additional geometric structure beyond the
purely topological notion of manifolds. We consider an n-dimensional Riemannian manifold
(M, g) with metric g, which for each p € M gives rise to the norm of tangent vectors v € T,M

through [|v||4 := g, (o, 0)'/2, and angle between two tangent vectors v, w € T,M through cos 6 =
gp(U’W)
llollgllwllg "
The metric lets us measure lengths of curves: for a (piecewise) smooth curve y : [a,b] — M,
its length is

b
Ly(y) = / Iy (D), dt

(This definition is independent of parameterization.) The Riemannian distance between points
p,q € M is then defined as the infimum of lengths over all curves connecting p and gq. (Note that
“distance” is also almost always used to refer to minimum distance, a convention we will also
adopt throughout this thesis unless otherwise noted.) Curves that are locally length-minimizing
are called geodesics. In R", geodesics are straight lines; geodesics generalize straight lines to
arbitrary Riemannian manifolds.

10
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Parallel transport. Geodesics can also be defined to be curves whose tangent vectors remain
parallel to the curve as they are transported along the curve. To define what it means for vectors
to “remain parallel” across different tangent spaces, we need the concept of a connection, which
provides a way to differentiate vector fields along curves. The covariant derivative generalizes
the notion of a directional derivative to curved manifolds, and an affine connection V. on M
assigns to a pair of vector fields X, Y a new vector field VxY that gives the covariant derivative
of Y in the direction X. The fundamental theorem of Riemannian geometry states that given
a Riemannian metric g, there exists unique affine connection on M, the Levi-Civita connection,
that is both metric-compatible (Vg = 0) and torsion-free.

The connection enables definition of parallel transport along curves: givena curvey : [ — M
and initial vector Vj € T, (;,)M, there exists a unique vector field V along y such that V(t,) = Vj
and V,/V = 0. Parallel transport of V along y maps tangent vectors in T, ;)M to tangent vectors
in T, (;,)M. A geodesic is a curve y whose velocity vector field y’ is parallel-transported along
itself, meaning V,y’ = 0.

Signed distance. Consider a codimension-1 submanifold Q c M (for example, curves on a
surface, or surfaces within a volume). If Q separates M into an interior A and an exterior M \ A,
we can define a signed distance function (SDF) ¢ : M — R as

_)dy(x, Q) xeM\A
$(x) = {—dg(x, Q) xeA

where the sign of ¢(x) indicates whether x is in the interior or exterior of Q. SDFs hence encode
both geometric information (how far is x is from Q) and topological information (on which side
of Q lies x) in a single scalar function.

Signed distance is essential to many problems across graphics and vision, forming a basic
component of numerous algorithms from geometric modeling [Museth et al. 2002], physical
simulation [Osher et al. 2004], rendering [Quilez 2008], path planning [Oleynikova et al. 2016],
geometric learning [Yariv et al. 2023] and computer vision [Vicini et al. 2022]. For watertight
geometry in R”, there are many ways to compute signed distance: for example, unsigned distance
can first be computed via fast, exact closest point queries [Sawhney et al. 2020], then signed
via basic inside-outside tests like ray shooting [Haines 1994b]. Alternatively, one can sample
geometry onto a grid and use methods like fast sweeping [Osher et al. 2004]; a few methods
consider unsigned distance to curves embedded in surfaces [Bommes and Kobbelt 2007; Trettner
et al. 2021], which can then be signed using, e.g., flood fill. ~ signing unsigned distance

For non-watertight, noisy, self-intersecting, or otherwise broken \
geometry, the operations of computing distance and signing no longer ’
commute; for one, simply signing unsigned distance can yield a func- Y
tion quite different from the SDF to completed geometry (inset). Like- \ J AN\ )
wise, wavefront-based methods like fast marching [Kimmel and Sethian 1998] and learning-based
variants [Lichtenstein et al. 2019; Huberman et al. 2023] propagate sign errors. Some past works

consider regularized signed distance for broken geometry, though they suffer from various

11
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downsides that affect their accuracy, robustness, or generality [Bzerentzen 2005; Mullen et al.
2010; Calakli and Taubin 2011; Xu and Barbi¢ 2014; Brunton and Rmaileh 2021]. In Chapter 5,
we present an algorithm for signed distance that is robust to broken geometry, and generalizes
to curved surfaces and alternative spatial discretizations.

12
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Inside-outside

As introduced in Section 2.3.3, the winding number is the number of times a curve or surface
wraps around a given point. Winding numbers are a basic component of geometric algorithms
such as point-in-polygon tests, and their generalization to data with noise or topological errors
has proven valuable for geometry processing tasks ranging from surface reconstruction to mesh
booleans. However, standard definitions on R? do not immediately apply on surfaces, where
not all curves bound regions. Here, we develop a meaningful generalization, starting with the
well-known relationship between winding numbers and harmonic functions. By processing the
derivatives of such functions, we can robustly filter out components of the input that do not
bound any region. The key idea of our method is to turn the difficult problem of determining
inside/outside of an unstructured collection of broken curves, into an easier but equivalent
problem about vector fields.

Ultimately, our algorithm yields (i) a closed, completed version of the input curves, (ii) integer
labels for regions that are meaningfully bounded by these curves, and (iii) the complementary
curves that do not bound any region. Because we work with smooth functions defined globally on
the domain, our algorithm is much more robust than if we had tried to work directly with sparse,
singular curves. The algorithm is guaranteed to work if the input is “perfect” (no noise, gaps, etc.),
and otherwise degrades gracefully in the presence of imperfections. The main computational
cost is solving a standard Poisson equation, or for surfaces with nontrivial topology, a sparse
linear program.

3.1 Winding numbers as a jump harmonic function

We use M to denote a surface domain, and I a collection of oriented curves on M. As input, the
algorithm takes in M and I'.

Classic winding numbers jump by 1 when one crosses the curve from the right, yielding a
piecewise constant function for closed curves. For broken curves, we must consider the more
general solid angle function, which Jacobson et al. [2013] call the generalized winding number
(GWN). In turn, solid angle is not well-defined for curves on surfaces, leading us to consider

13



CHAPTER 3 Inside-outside

the broader class of harmonic functions with jumps, or jump harmonic functions for short. For
a non-self-intersecting curve I', a jump harmonic function u satisfies a Laplace equation with
jump boundary conditions, which we call a jump Laplace equation:

Au =0, on M\ T,
ut —u =1, onT, (3.1)
out/on =ou"/on, onT.

Jao

More generally, u can jump by a different integer value across I' if I" wraps onto itself multiple
times.

Harmonic functions continuous up to jumps also
arise naturally in surface parameterization, for in- 000)
stance, as conjugate harmonic functions in confor- I
mal mapping [Gu and Yau 2003; Sawhney and Crane
2017]; our treatment of such functions is similar to ~————
Tong et al. [2006]. A jump harmonic functions u is in fact harmonic everywhere, including at
points on the curve, modulo the integer jumps; the angle-valued function u only fails to be
harmonic at curve endpoints, where there is a branch-point singularity (inset) — see [Krutitskii

[ —TTe
- 0 +7

2001] for a careful treatment in the case M = R jump harmonic integer

If the domain M is simply-connected, meaning there cannot function region labels
exist nonbounding loops on M, then we can simply solve Equa- i p round L .
tion 3.1 for the function u. If T is closed, u is analogous to the ¢ 'A ‘ r)
ordinary winding nuber in the plane, which yields a piecewise - e B
constant, integer-valued function (inset). If I is not closed, but M (Jﬁa 1 ﬂ

is still simply-connected, then u yields a “soft” real-valued (rather
than purely integer-valued) indicator function, analogous to solid angle.

3.2 Derivative processing

If M is not simply-connected, and the input curves I" -2 - PSRIGWN

have nonbounding components, then the solution u to
Equation 3.1 will not look like a region labeling (Fig-
ure 3.1). The crux of our method is to filter nonbounding
components by processing the derivative o of u.

If o = 0, then u(x) is piecewise constant, meaning
that u(x) is already a valid (piecewise constant) region
labeling. Conversely, if w # 0, then there are nonbound-
ing components of I'. In particular, nonbounding compo-
nents of I', which are noncongruent to zero in the first ho- son surface reconstruction (PSR) and gen-

gen
mology group H; (M), are encoded by the harmonic com- i ed winding numbers (GWN), can
ponent y of the 1-form w, which is noncongruent to zero  yje|d regions that do not follow the input

+1 contoured function

Fig. 3.1: On surfaces, contouring the so-
lution to Equation 3.1, equivalent to Pois-

curves, and/or jump across nonbounding
14 curves.
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in the first cohomology group H' (M) = ker(d,) \im(dy)
(Section 2.3.2).

differentiate  jump derivative Darboux derivative Our keY 1n51ght is that Jump harmonic func-
= >~ —=—"p = tions form the “bridge” through which we can
Jjump armonlc ~ . . .
' f“anE'°"5 1-forms transform curves into functions, and vice versa.
A = =/ = In particular, jump harmonic functions can
integrate  jump Laplace equation  integration w/ jumps bOth encode curves (Where the function jumps
r A u D © in value) as well as a curve’s homology class
® ® . o . .
5 l@ (through its derivative). Our algorithm will
; J v / Y amount to a round-trip around the diagram to
! ® @

the left, where we first translate the input curve
I' into a jump harmonic function (Equation 3.1), then differentiate this function to obtain a
differential 1-form. We then translate the resulting 1-form back into a jump harmonic function
and curve, which will correspond to the final winding number function and curve decompo-
sition, respectively. Performing these translations amounts to using appropriate notions of
differentiation and integration.

3.2.1 Differentiating and integrating jump harmonic functions

Discontinuous functions u : M — R that jump by an integer across certain curves can also be
represented as continuous angle-valued functions ¢ := e, Since e%* = ¢#(**1) angle-valued
functions “forget” about any integer jumps, yielding a continuous function that enables one to
define a suitable derivative for u even at points where u is discontinuous.

In a bit more detail, the notions of differentiation and inte- flx), w(x)
gration simply correspond to their usual notions from ordinary I/ <
calculus, except we have to take extra care when dealing with the G| /ix 0 1

discontinuities of jump harmonic functions. For simplicity, we’ll
first consider a periodic 1-dimensional function f(x) defined on the unit interval [0, 1]. The
distributional derivative of any such function can be expressed as

Fix) = o)+ ) Ady,

where w is a periodic piecewise smooth function, and A; is the size of the jump at x; (Figure 3.2).
Likewise, we decompose the change in a jump harmonic function f into a 1-form describing
continuous change in f, given by the Darboux derivative o = D f, which can be thought of
as the ordinary differential df “modulo jumps”, and a 1-chain describing discontinuous jumps,
given by the jump derivative A := Jf. Just as w(x) “forgets” about the jumps in a 1D piecewise
linear function (see inset), D f forgets about jumps across region boundaries on a surface.

w(x) fx)
0 ix G| /ix
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CHAPTER 3 Inside-outside

Because the Darboux derivative of a jump har-
monic function “forgets” the jumps, there is no
unique inverse to Darboux differentiation. In partic-
ular, we can only integrate “up to jumps”: a canon-
ical choice is perhaps a piecewise linear function
with constant slope, but in general there are many
possible piecewise differentiable functions f such
that the continuous part of f” equals w. Ordinarily
this function would be determined (up to a constant)
via standard integration, but for a periodic function
there may be no continuous solution — for example,

Fig. 3.2: The derivative of any piecewise
smooth function f(x) on a periodic interval
(center) can be decomposed into a piecewise
smooth function w(x) (right) plus a sum of
delta functions (left). The former captures
continuous changes in f while the latter cap-
tures jumps in f.

if w is strictly positive. Instead, we must decide where f should jump.

Our understanding of the 1D case more or less extends directly to the 2D case. On surfaces
M of non-trivial topology, after solving for a jump harmonic function u via Equation 3.1, we
compute the Darboux derivative @ = Du. We use Hodge decomposition (Section 2.2) to extract
the harmonic part y of w. In this case, only § will be nonzero, due to singular behavior near
interior endpoints. Hence, we need only solve a single Poisson equation A, = dw, then evaluate

Yy < o —6p.

@0

@
@
@

i

Fig. 3.3: A collection of loops can be de-
composed into bounding and nonbound-
ing components in many different ways.
We look for the decomposition whose
residual is shortest (middle).

Next, our goal is now to find a residual function v
whose Darboux derivative looks like y, and hence de-
scribes the nonbounding part of our input curves. If
we imagine this nonbounding part is a curve I, then
v must jump across I/, and should not jump across the
complementary bounding component I' \ I'. However,
the choice of I"” is in general ambiguous (Figure 3.3).
Hence, we look for the minimal jumps needed for v to
integrate y. Ultimately, the residual function v is another
jump harmonic function whose jumps encode a com-
pletion of the nonbounding components of I'. Finally,
we solve for the final winding number function w by

solving for a jump harmonic function with jumps encoded by I', minus the jumps in the residual

function v.

3.3 Results

source image
A}

Incomplete oriented curves arise in many settings,
ranging from curves projected onto noisy surfaces,
to strokes painted on a noisy mesh, to imperfect
user selections. We apply our method, abbreviated
as surface winding numbers (SWN) to several such
tasks.

16

projected curves

Fig. 3.4: A complicated shape is projected onto
a ziggurat with sharp overhangs, creating bro-
ken curves; SWN nicely fills in the bounded
regions.
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(mis-)selected
edges
recovered
region

" R
A - { rlnglecig "\ nonbounding
R v

curves

Fig. 3.6: A common frustration with screen-space
selection is that distant edges are often selected
unintentionally. SWN filters out spurious parts
of the selection, and completes loops to yield the
expected segmentation.

Fig. 3.5: Even on highly non-manifold meshes,
SWN can produce an effective region labeling and
completions of nonbounding curves.

Robustness. SWN is robust to defects in the input curves ( Figures 3.14 and 3.4). Especially if
gaps are reasonably small, we generally recover the same regions as for equivalent closed curves
(Figure 3.7). In practice our method is also robust to low-quality geometry (Figure 3.13), meshes
with low-quality elements (Figure 3.8), and highly nonmanifold connectivity (Figure 3.5), owing
to the strong regularity of elliptic problems. Since it is purely intrinsic, surface self-intersections
do not result in region misclassification. Moreover, an intrinsic formulation also enables us to
use robust methods for intrinsic retriangulation if the mesh is particularly bad [Sharp et al. 2019b;
Gillespie et al. 2021; Sharp et al. 2021], as illustrated in Figure 3.8.

Sketching on surfaces. SWN robustly handles
imperfect broken curves, like ones drawn in surface | .5 5
sketching and painting where user input is impre- [55°4 <
cise. For instance, in Figure 3.13 a user sketches |/ XY
very reasonable yet broken curves; SWN yields a
nice coloring of the sketched regions, which can be
further refined by the user. Figure 3.14 demonstrates
the utility of SWN even in 2D, where a user draws
rough strokes to segment a complex shape. Here,
GWN yields undesirable results — despite being a
2D method — since the influence of open strokes
leaks across the domain boundary, whether or not the boundary itself is included in T'. Likewise,
GWN may not produce the expected result for 2D regions with holes — for instance, directly
rounding the function u in Figure 3.9 would yield the same kind of phantom curves seen in
Figure 3.1.

Fig. 3.13: We can robustly identify regions
even on geometry with severe noise, inter-
sections, and fold-over. Here, several strokes
quickly painted in screen space are used to
color regions on the surface.

Stamping and booleans. We can also perform robust boolean operations on surfaces, even
for defective domains and/or curves. To get initial shapes, we can for instance “stamp” existing
vector graphics onto the surface (Figures 3.4 and 3.11). Rather than worry about numerically

17



CHAPTER 3 Inside-outside

@
>

Fig. 3.7: As I becomes less broken, w approaches
the expected winding number function, and the
coefficients on nonbounding loops g approach
1. Throughout, the rounded winding number W
yields the correct inside-outside classification, fil-
tering out nonbounding components even for very

broken inputs.
| Q
1 ‘ }
0 ]
u w

Fig. 3.9: Even for planar regions, one must think
carefully about how curves do (or do not) bound
regions. Here, SWN correctly filters out the in-
fluence of a nonbounding curve connecting two
boundary components.

less broken

round(u)

Fig. 3.11: A recycling logo is projected onto a noisy
3D scan of a trash can from [Choi et al. 2016],
creating a highly broken curve. Despite large holes
in the scan, SWN produces a reasonable region
labeling.

18

Fig. 3.8: Even on meshes with low element quality,
SWN can produce reasonable region labels (center).
Since our formulation is intrinsic, any remaining
artifacts can be eliminated via intrinsic Delaunay
refinement (right).

Fig. 3.10: Unlike previous methods, we can com-
pute boolean operations on regions defined by im-
perfect, broken curves on surfaces.

incomplete edge
loop selection

+1

=l

Fig. 3.12: Many 3D modeling tools provide edge
loop selection tools, but are easily tripped up by
irregular connectivity such as this mixed quad-
triangle mesh (left). By reasoning about functions
rather than edges, we robustly infer user intent
(right), even on this topologically complex model.
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robust intersection, we can lean on SWN to ensure we obtain well-defined regions. Boolean
operations are then trivially computed via element-wise logical operations (Figure 3.10). Unlike
BoolSurf [Riso et al. 2022], we can perform these operations for imperfect, broken curves —
albeit at larger computational cost. Note also that unlike extrinsic mesh booleans [Zhou et al.
2016], we need not worry about self-intersections of the surface itself.

GWN w/out boundary
[Jacobson et al 2013]

round(u)

GWN w/ boundary curve
[Jacobson et al 2013]

\

input
strokes

_ Q“h\ round(u) Q“Tﬁ
9 AR m VAL

0o input input
(thin shell) (thick solid)
1
SWN 0 Fig. 3.15: In some scenarios, directly contouring
(ours) N 4

e -1 the function u can yield useful results. Here for
instance a user avoids the misery of selecting every
small loop in a complex model. We also obtain a

similar segmentation whether working with a solid
the wrong result, since the influence of strokes (right) or shell-like model (left).

“leaks” across the domain boundary. Middle right:
including the boundary curve just shifts GWN’s
solution by +1. Bottom right: SWN produces the
desired result, robustly handling gaps, misclicks,
and intersecting strokes.

Fig. 3.14: Left: a user makes rough strokes to select
regions of a 2D shape. Top right: GWN produces

Region selection. Selection of regions on geometrically or topologically complex 3D models
is a challenging user interface design problem. SWN is a valuable component for building such
tools. For instance, Figure 3.6 highlights a common frustration when selecting mesh edges in
screen space; here SWN automatically filters out misselected edges, capturing the user intent.
Similarly, Figure 3.12 shows how SWN can be used to repair loops that are not easily chosen via
edge-based selection tools common to 3D modelers. Other tools provide facilities for directly
selecting regions rather than curves, e.g., using a lasso or “fat” paintbrush. Here, however, one
encounters the same problem: a region selected in screen space might inadvertently highlight
distant, unintentional pieces of the surface. One could likewise use SWN to filter the boundary
of such a selection. Finally, Figure 3.15 shows an example where one might not want to filter out
nonbounding loops. Here, rather than process the function u, we simply apply the contouring
procedure from Section ??, yielding loops that did not belong to the input, yet automatically
complete the implied segmentation.
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-,

Fig. 3.16: Four of the 934 test cases
in our synthetic benchmark. Each

model is assigned ground truth re-
gion labels (indicated by colors),

along with broken boundaries for

those regions (black), and addi-

tional broken nonbounding loops

(red).

Performance and accuracy. To measure the success rate
of our algorithm, we constructed a synthetic dataset of models
with ground truth regions and nonbounding loops (Figure 3.16).
We started with the meshes from Myles et al. [2014], remeshed
them to resolutions between 10k and 90k vertices, and gener-
ated random regions by taking sublevelsets of low-frequency
Laplacian eigenfunctions. To obtain nonbounding loops, we
computed a greedy homology basis [Erickson and Whittlesey
2005], picked a random subset of the loops, and straightened
them slightly using FlipOut [Sharp and Crane 2020b] before
snapping them back to mesh edges. We then deleted random
segments from these curves. In total, we obtained 934 test
cases of which 451 were defined on nonsimply-connected sur-
faces (i.e., those with nontrivial topology). For each test case,

we quantify error as the percentage of surface area mislabeled by our method.

80%

40%

0%
80%

% of meshes

40%

0%

0%

Success rate on nontrivial surfaces

ﬁ

BN SWN

round(u) i 5

5%

% error

10%

Runtime

topologically-trivial surfaces
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number of mesh vertices

Fig. 3.17: Error rates for SWN (fop) compared to
naive rounding of u a la GWN (bottom). Error
is quantified as percentage of mislabeled surface
area. The two highlighted examples show how
naive rounding can fail to filter out nonbounding
loops (in red) which are correctly identified by
SWN.

Fig. 3.18: Top: on topologically trivial surfaces, our
method boils down to a quick linear solve. Bottom:
on surfaces with nontrivial topology we must also
solve a linear program, which becomes the compu-
tational bottleneck. These timings were measured
using an Intel Xeon W-1250 CPU with 16 GB of
RAM.

On simply-connected surfaces our method typi-
cally takes less than two seconds (see Figure 3.18, top), P
and achieves a mean/max error of only 0.14%/5%. On

nonsimply-connected surfaces, there was occasionally
fundamental ambiguity in the input, yielding results
quite different from the ground truth (Figure 3.19), but
in general our method remains quite accurate, achieving

\ 8~

ground truth regions SWN

Fig. 3.19: Since SWN always extracts
the shortest collection of nonbounding
curves (Figure 3.3), it may not always re-
produce the ground truth — but still gives
a reasonable segmentation.
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errors under 0.5% on 80% of models. More importantly,

SWN performs much better than naive rounding of the

function u a la GWN, which can create phantom curves

(Figure 3.1) which significantly degrade the accuracy of the final labels (Figure 3.17). The linear
program takes much longer than the single linear solve, but still runs in a matter of minutes
(Figure 3.18, bottom); see Section ?? for a more approximate, but faster alternative.

21



CHAPTER 3

Inside-outside

22



CHAPTER A4

From inside-outside to signed distance

Reconstruction of curves and surfaces, and signed distance computation, represent two fun-
damental problems in geometry processing. Of course, the two problems are highly related,
because a meaningful notion of signed distance depends on a meaningful notion of inside and
outside, which is often provided by reconstruction. Chapter 5 in fact describes a robust algorithm
for computing signed distance that works by essentially achieving simultaneous reconstruction
and distance.

The connection between reconstruction and distance computation can be formalized: in
Section 4.1, we show that winding numbers-based reconstruction and Poisson Surface Re-
construction are related to signed distance via a relatively simple change of variables. This
relationship gives rise to convolutional distance approximations: a class of algorithms that ap-
proximate the minimum distance to a given shape through a summation of kernels concentrated
on the shape’s boundary. Such approximations for unsigned distance have been re-discovered
several times throughout image processing, signal processing, computer vision, and computer
graphics. Signed variants, though they are not described as much in the literature, can also be
derived. At a high level, these (un)signed distance approximations may be obtained as viscosity
solutions to eikonal equations, or through asymptotic analysis using Laplace’s method, encom-
passing the well-known Hopf-Cole transformation for PDEs, Varadhan formulas for geodesic
distance, and LogSumExp methods and softmax functions used in machine learning.

However, while such convolutional distance approximations produce good results for densely
sampled boundaries such as polygon meshes and image contours, we also show that no convo-
lutional approximation can yield good results on sparsely sampled boundary data consisting
of isolated point samples, such as point clouds. Instead, it is necessary to decouple regression
from distance computation to some extent, resulting in the multi-step but especially robust
Signed Heat Method described in Chapter 5. It remains an open problem in vision and geometry
processing whether there exists a both fast and accurate convolutional algorithm that computes
robust (un)signed distance to point clouds (Section 6.1).
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CHAPTER 4 From inside-outside to signed distance

4.1 A unification of winding numbers, Poisson Surface Re-
construction, and signed distance

In this section, we describe the connection between winding numbers, Poisson Surface Recon-
struction, and signed distance.
We start by considering the following eikonal equation for unsigned distance:

IVul> = 1 x¢Q

u(x) =0 x € Q (41)
A (x) = 1 x€Q.
This equation describes an unsigned distance function u(x) to Q in Vu(x)|xea
some domain M (inset). The boundary conditions consist of Dirichlet Q 7

boundary conditions that state the distance should be zero at the
source geometry Q, and double-sided Neumann conditions that state
u(x) should be increasing on either side away from Q. M
Distance functions, however, are not differentiable at the cut
locus of the source geometry Q, the locus of points at which the
minimizer of distance to Q is non-unique. For x on the cut locus, Vu(x) is hence undefined
and the meaning of Equation 4.1 is unclear. Distance functions instead satisfy Equation 4.1 in
a “viscosity sense”: whereas a true distance function is not everywhere differentiable, it can
be obtained as the limit of the solution to a perturbed version of the eikonal equation as the
amount of perturbation goes to zero. In particular, Equation 4.1 is perturbed by adding a small
amount of scalar diffusion, obtaining a “viscous” eikonal equation

IVul>-1 = %Au(x) x¢Q
g(x) =0 x€Q (4.2)
aain(x) = =*1 x € Q.

The seminal work by Crandall and Lions [1983] introduced viscosity solutions as a type of
generalized solution unique for Hamilton-Jacobi equations.

Equation 4.2 is an example of a time-independent, viscous Burgers’ equation, for which
there is a well-known change-of-variables called the Hopf-Cole transformation (sometimes called
Cole-Hopf transformation) [Hopf 1950; Cole 1951]. Evans [1998, Section 4.4] gives a derivation
of the transformation, which through exponentiation turns a nonlinear time-dependent viscous
Burgers’ equation into linear heat equation. A variant of this transformation,

w(x) = exp(—Au(x)) (4.3)
turns the nonlinear, viscous eikonal equation in Equation 4.2 into a linear screened Poisson

equation, where the viscosity now acts as a screening term that controls the amount of damping
on a diffusive process [Belyaev and Fayolle 2015]:

Aw(x) = 22w(x) = 0 x¢Q
w(x) = 1 x €Q (4.4)
%(x) = —‘i;”—n_(x) x € Q.
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The Hopf-Cole transformations, as applied to the heat equation and the screened Laplace
equation in Equation 4.4, are identical to the two Varadhan’s formulas for geodesic distance
[Varadhan 1967].

Taking the Hopf-Cole transformation further, we now consider a signed eikonal equation,
which solves for signed rather than unsigned distance:

IVu()IIP = 1 x¢Q
u(x) = 0 xeQ (4.5)
%(x) =1 xeQ.

Compared to Equation 4.1 for unsigned distance, Equation 4.5 has
Neumann conditions that are continuous across Q (inset).
We can likewise consider a signed eikonal equation with viscosity,

signg (x) ([[Vu(x)||? - 1) %Au(x) x¢Q
u(x) = 0 x€Q (4.6)
%(x) =1 x €Q,

and a signed variant of the Hopf-Cole transformation
w(x) = sign,, (x) exp (—A sign,, (x)u(x)) (4.7)

which we call the signed Hopf-Cole transformation. Applying Equation 4.7 to Equation 4.6 yields
a jump screened Laplace equation,

Aw(x) = 22w(x) = 0 x¢&Q
wr(x) = =1 x€Q (4.8)
W(x) = L (x) xeQ.

Compared to the screened Laplace equation in Equation 4.4, the jump screened Laplace equation
in Equation 4.8 has boundary conditions that make the solution jump across the source geometry
Q. A derivation of the signed Hopf-Cole transformation, valid for both closed and open Q, is
given in Appendix A.

The relationship between distance functions and screened Laplace solutions via the Hopf-
Cole transformation can be described intuitively as follows. The jump screened Laplace equation
in Equation 4.8 diffuses double-sided boundary values from Q, where larger values of A means
greater screening (damping) so that boundary data is diffused less and instead more concentrated
around Q. Diffusion yields a function that is monotonic in distance, and in particular, its decay
is roughly exponential in distance, so applying the inverse signed Hopf-Cole transformation

u(x) = —% sign,, (x) log |w(x)]

essentially reverses this exponential decay by taking a log, giving an approximation of distance
(Figure 4.1, right).
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inside-outside signed distance
w - . . u
\ N \\\
: & 0
—
=1l
—
larger A (more screening) inverse signed Hopf-Cole transformation

u — —1sign, (x) log |w]

Fig. 4.1: As the screening amount A goes to 0, the solution w to the jump screened Laplace equation
in Equation 4.8 converges to an inside-outside function (left). As the screening amount increases, w
converges to a signed distance function via a log-transform. (right).

The jump screened Laplace equation in Equation 4.8 can further be rewritten as the screened

Poisson equation
Aw(x) = 22w (x) = =2 (V - n(x)pq(x)) (4.9)

where n(x) denotes the outward-pointing unit normals to Q, and g is a measure concentrated
on Q. A derivation of Equation 4.9 is given in Appendix ??.

The Green’s function G*(x, y) of the screened Laplace operator, called the Yukawa potential
or screened Coulomb potential, has the expression

A — exp(=Allx—yl)
G (x, y) = W (410)

and can be used to express the solution w(x) of Equation 4.8 as the boundary integral equation

B G (x, 2) 3 Alx =z||+1) {(x —z,n(z))
) = Z/Q “on(z) T /Q 2l = 2 xp (A=) dz x¢ gi |
4.11

Unlike the distance function u for which |u(x)| — oo as ||x|| — oo, the solution w of Equation 4.8
exhibits exponential decay at infinity, and so can be represented by the boundary integral in
Equation 4.11.

Fascinatingly, these derivations establish a close relationship between a few classic occupancy
methods and signed distance. On one hand, as the screening parameter A — 0, the jump screened
Laplace equation in Equation 4.8 becomes a jump Laplace equation whose solutions — so called
jump harmonic functions (Chapter 3) — describe generalized winding number (Figure 4.1, left).
In turn, generalized winding number is a special case of Poisson Surface Reconstruction [Kazhdan
et al. 2006]: Poisson Surface Reconstruction is equivalent to a regularized version of winding
numbers, which corresponds to convolving the right-hand side of the Poisson equation in
Equation 4.9 with a Gaussian [Chen et al. 2024] (and taking A — 0). In summary, in the smooth
setting at least, we can obtain signed distance from occupancy methods simply by introducing a
screening term into their PDEs.
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Practical issues. On discrete surfaces, Crane et al. [2013b] advocate against approximating
geodesic distance by solving a screened Laplace or heat equation then applying a Hopf-Cole
transformation. In particular, for the distance approximation to be accurate, one needs to take the
diffusion time t — 0, but on discrete surfaces one cannot take t too small else the approximation
converges to the graph metric [Crane et al. 2013b, Appendix A]. On R", however, we can use the
boundary integral in Equation 4.11 uses not a discrete Laplacian, but Green'’s function for the
screened Laplace operator without discretizing R” — hence we can take t = A7 much smaller
(barring precision issues).

A more significant drawback of applying Hopf-Cole transformations/Varadhan’s formulas
is that they can be numerically unstable. First, the distance approximation can be inaccurate
near Q where |w| < 1, and log |w| hence has a very large derivative — so any existing errors
near Q) become exacerbated after applying a log transform. These errors may arise, for example,
due to the Yukawa potential’s singular behavior at Q. Second, one quickly runs into numerical
precision issues far away from Q due to the exponential decay of the Yukawa potential and heat
kernel.

It may be possible to improve distance accuracy with additional computation, for example
using the higher-order corrections proposed by Belyaev and Fayolle [2024]. But in Section 4.3,
we will also see that these distance approximations are also fundamentally flawed when acting
on sampled data, such as point clouds, severely limiting their direct applicability to real-world
data.

4.2 Convolutional distance approximations

Before discussing further limitations of the distance formula obtained in the previous section,
we first observe that the formula can be generalized to a broader class of distance formulas.
The boundary integral formulation of signed distance in Equation 4.11 implies that signed
distance can be obtained by convolving a particular exponential kernel over the source geometry
Q, then applying the appropriate log transformation. The kernel used for convolution, however,
does not have to be the Yukawa potential (Equation 4.10). In fact, for any exponential kernel
with parameter A appearing inside the exponential, and for any continuous function # : R* — R
and twice-differentiable function ¢ : R? — R, we have the following asymptotic behavior:

fQ h(z) exp (—A¢(2)) dz Age (27 /1)%? det (Vz(p(x”‘))_l/2 h(x*) exp (—Ap(x™)) (4.12)

where x* = argmin,  ¢(z) is the minimizer of the exponential argument ¢, assumed to be
unique [Tibshirani et al. 2024, Eq. 11]. The observation in Equation 4.12 is an example of
Laplace’s method, a classic technique in asymptotic analysis [Evans 1998, §4.5], [Bender and
Orszag 1999, §6.4].

Intuitively, the integral on the left-hand side of Equation 4.12 becomes increasingly peaked
where ¢ is largest, such that in the limit all other contributions become subdominant, that is,
exponentially small with respect to this peak contribution. Applying —% log(-) to both sides of
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Equation 4.12, asymptotically we obtain a direct estimate of the minimum of ¢:

dloga h(x")
2

—%log( /Q h(z) exp (~10(2)) dz| ~ p(x*) + +O(Y), A — oo,

All terms beyond the first go to 0 as A — co.
Taking ¢(z) to be the minimum distance function to x, that is, ¢(z) = argmin,, ||x — z||,

and taking the domain of integration to represent the source geometry Q to which we compute
distance, we define

J(x) = —% log (/Q hy(z) exp (—A||x — z||) dz (4.13)

as the general form of a convolutional distance formula that estimates the minimum distance
from a point x to Q. A special case Equation 4.13 is the formula we derived in Section 4.1 via the
Hopf-Cole transformation, where h,(z) = Mllx_;%i)fz”_f’n(z))
also used by Varadhan [1967], whose formulas yield the same exponential change-of-variables
as Hopf-Cole.

We can also obtain a self-normalized convolutional formula (terminology we take from

Belyaev and Fayolle [2024])

. Similar asymptotic analysis was

Joy9:(2) exp (=2llx = ) dz
Joyexp (=Allx = 2I}) dz

d(x) = (4.14)

that gives a smooth approximation of g,(x*) as A — oo, where x* = argmin,_, ¢«(z) is again
the minimizer of ¢.(z) = ||x — z||. Equation 4.14 can be obtained either by applying Laplace’s
method twice (once to the numerator, and once to the denominator), or by taking the derivative
of Equation 4.13 with respect to A. When used to approximate signed distance, most authors use
the pseudonormal distance [Alexa et al. 2001; Boissonnat and Cazals 2002; Kolluri 2008; Oztireli
et al. 2009; Yang et al. 2025]

9x(2) = (x — z,n(2)) \

. . L . (x —z.n(2) ;
that simply uses the query point x’s projection onto a tangent plane (inset), \>7
though of course other local distance approximations may be used. Q

Equation 4.14 is an example of a kernel density estimator, and offers greater flexibility than
Equation 4.13 in the sense that it instead interpolates the function g, which need not be a distance
function or even scalar-valued. For example, Sharp et al. [2019¢c] use a version of Equation 4.14
to compute closest-point interpolation of both scalar- and vector-valued data on manifolds.

Equation 4.14 can also be seen as a partition-of-unity method that computes an expected value
exp(=Allx=z'[})
Jo exp(=Allx—z))”

of gx(z), where the local estimate at z = z’ has probability
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Instances of the two convolutional formulas in Equation 4.13 and Equation 4.14 appear
widely across mathematics, computer science, and engineering. For instance, we have already
mentioned that Varadhan’s formulas are examples of Equation 4.13. In computer vision, the
Schrodinger distance transform uses the exponential asymptotics of the Schrodinger equation to
arrive at an instance of Equation 4.14 [Gurumoorthy and Rangarajan 2009; Sethi et al. 2012].
Various versions of Equation 4.13 or Equation 4.14 were further observed by Kolluri [2008],
Karam et al. [2019], Madan and Levin [2022], and Abgrall [2022]. More recently, the relationship
between eikonal and screened Laplace equations has been used in neural reconstruction methods
[Lipman 2021; Wang et al. 2025].

More generally, the exponential asymptotics that underlie convolutional distance formulas
also underlie common logistic regression techniques used for classification problems. Equa-
tion 4.13, when applied to discrete data, is a generalization of the LogSumExp function, which
is commonly used as a smooth relaxation of the minimum or maximum operator in machine
learning. The LogSumExp function is also known as the Kreisselmeier-Steinhauser function,
particularly in the systems and control community [Kreisselmeier and Steinhauser 1980]. The
gradient of the LogSumExp function, called the softmax function in machine learning, is an
instance of a self-normalized convolutional formula in Equation 4.14, and has the same form as
the Boltzmann distribution commonly used as a probability distribution in statistical mechanics.
Tibshirani et al. [2024] gives an excellent survey of further connections between Laplace’s
method and smooth minimizers throughout the fields of convex optimization, statistics, machine
learning.

Other properties. Equation 4.13, the first convolutional distance formula, gives an understi-
mate of the true distance to Q if both sides of Equation 4.12 are multiplied by at least 1%/2, and
h > 1. (Note that the dimension d will be the dimension of Q, i.e. d = 2 if Q is a surface in R>.)
Also, if x is on the cut locus of Q, then ¢ no longer has a unique minimizer, in which case the
distance approximation in Equation 4.13 has additional error, but one that gets absorbed into
the O(A7!) term.

It remains an open question whether there are closed-form expressions for the integrals of
Yukawa potentials or other exponential kernels over (rational) parametric curves or triangles,
analogous to closed-form expressions for winding numbers [Jacobson et al. 2013; Liu et al. 2025].
In particular, the example in Figure 4.1 was obtained by solving a screened Laplace equation on
a triangle mesh as opposed to closed-form integration along the source curves.

4.3 Fundamental limitations of convolutional distance

The asymptotic analysis in Section 4.2 implies that both convolutional distance formulas Equa-
tion 4.13 and Equation 4.14 are completely determined by the behavior of ¢,(z) or g.(z), re-
spectively, around the global minimizer x* of the exponential argument ¢, (z). Indeed, on some
level, Equation 4.13 and Equation 4.14 can be interpreted as constructing a global distance ap-
proximation simply by blending exponentially-weighted local distance approximations centered
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T R

no regularization isotropic regularization anisotropic regularization

Fig. 4.2: Regularizing the kernel in Equation 4.13 is equivalent to choosing the function h,(x), which
unfortunately has no effect asymptotically. Here, we use an exponential kernel with no regularization
(left), with isotropic Gaussian regularization (center), and with anisotropic Gaussian regularization (right),
which all produce non-robust distance for A = 100.

on the geometry Q, in the style of countless other classic meshless interpolation methods that
use exponential radial basis functions, such as moving least squares surfaces, partition-of-unity
methods, and smoothed particle hydrodynamics [Blinn 1982; Alexa et al. 2001; Carr et al. 2001;
Boissonnat and Cazals 2002; Ohtake et al. 2005; Yu and Turk 2013].

However, the fact that convolutional distance approximations are essentially single-point
approximations severely hinders their robustness to noisy, incomplete, imperfect geometry:
it means that creating a convolutional distance approximation that gives generalized signed
distance — that is, globally accurate signed distance to the true, uncorrupted geometry underlying
the corrupted input — boils down determining a good function ¢, (z) or g,(z), which is just
as difficult as the general problem of computing generalized signed distance. For if we knew
a good function ¢, (z) or g(z) whose global minimizer produced generalized signed distance,
then it would be the solution to the general global problem (and vice versa).

Concretely, Equation 4.13 fares especially poorly on point-sampled data, where one obtains
a distance function whose level sets are to the sampled geometry, rather than to the underlying
surface from which the discrete geometry is sampled (Figure 4.3). As A — oo, one simply “snaps”
to the closest point in the input point set.

We might try regularizing the exponential kernel, based on the success of Chen et al. [2024]
at regularizing the kernels used in winding number methods. These regularized kernels were
introduced to avoid numerical and interpolation issues caused by the singularity of the ordinary,
unregularized Poisson kernel used for winding numbers, and can be interpreted as adopting
a stochastic model of the point cloud geometry. However, the choice of regularizing kernel
is equivalent to choice of the h,(z) function, which has no effect asympotically as A — oo
(Figure 4.2). In other words, while we need very high A to get good distance properties, the
asymptotic properties of the exponential function rapidly negate the effect of any regularization
we might choose.

Ultimately, we can either obtain better regression quality, or better eikonality, but not
both: the parameter A is coupled to both regression quality and distance accuracy, in opposite
directions, and empirically there are no values of A that yield acceptable results in both. On
one end of the spectrum, A is small and one obtains winding number methods, Poisson Surface
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larger A smaller A
better eikonality, better zero level set,
bad level sets bad eikonality

Fig. 4.3: For convolutional distance approximations, the parameter A is coupled to both regression quality
and distance accuracy, in opposite directions: large A values are needed to obtain better eikonality, but
overfits distance to the point set (left); and conversely, smaller A’s give better reconstruction of the zero
level set, in the sense that it at least interpolates the data points, but isn’t close to a distance function
(center, right). Here we show an example using Equation 4.13.

Reconstruction, and the method of Madan and Levin [2022], which essentially sacrifice distance
accuracy to focus on regression quality (reconstruction). On the other end of the spectrum,
one has the convolutional distance transforms applied in image processing [Gurumoorthy and
Rangarajan 2009; Sethi et al. 2012; Karam et al. 2019], where issues of robustness likely never
occurred: these transforms operate on dense image contours whose sampling resolution matches
the resolution of the image on which distance is being computed.

We cannot alter the exponential part of the kernel, because the exponential factor is the key
to the asymptotic behavior that enables distance approximation. Kernels that decay slower —
for example, kernels of the form 1/||x — z||* as used in Shepard interpolation — need even larger
values of A to achieve good distance, while suffering from the same drawbacks since they are
essentially approximations of the exponential. Kernels that decay faster, such as the Gaussian
exp(—Al|x — z||?) suffer immensely from numerical instability, and anisotropic kernels alter the
metric with which distance is measured.

Convolutional distance approximations to point-sampled curves and surfaces do converge to
the correct solution as the sampling gets more and more dense, assuming no noise in the samples.
However, accurately evaluating signed distance to noisy, partially-observed point clouds, at
arbitrary points in space, remains an important problem to be solved, especially in vision and
robotics.

-

The self-normalized variant of convolutional distance approximations
(Equation 4.14) holds more promise, though it is still difficult to design
a suitable function g, (z) to describe the local estimates to be blended to-
gether. For one, using the naive pseudnormal distance g,(z) = (x — z, n(z))
common in the literature yields simple linear continuation of surfaces (in-
set). Building distance functions out of higher-order local approximations
is a focus of current work (Section 6.1).
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4.4 Relation to kernel methods

The self-normalized convolutional distance formula presented in Equation 4.14 is an example of
a kernel density estimator, which finds broad use in regression tasks.

Broadly speaking, kernel density estimation uses kernel smoothing to estimate the unknown
probability density function of a random variable: one makes inferences about a population
by constructing a smooth interpolant or regressor through a finite number of data samples.
This interpolant is constructed as a weighted average, where weights are determined by a
kernel typically defined to assign higher weights to points closer in distance. For example, the
Nadaraya-Watson estimator of a real-valued variable f(x), using data points {p;},, is defined

* S F(p)k(x.p)
Ty o i J\Pi)R(X, pi
J&) = = e

where the kernel k(x, y) is often chosen to be a Gaussian kernel, and so has asymptotic behavior
analogous to that of Equation 4.14. We can likewise think of convolutional distance approxima-
tions as a “nonparametric kernel method”, distinct from “model-based” methods that rely on, for
example, surface fitting to point clouds (jet fitting, polynomial fitting, etc.)

In image processing, kernel methods appear as digital filters used for, for example, smoothing
or denoising. Kernel methods are also used in manifold learning (a.k.a. nonlinear dimensionality
reduction), where one assumes that some high-dimensional data lies on a lower-dimensional
manifold, and tries to learn this manifold. More recently, kernel methods underpin the “attention”
mechanism used in transfomer neural network architecture [Vaswani et al. 2017]. These examples
are applications of kernel regression, which specifically aims to find the relation between two
random variables (input data and output).

While Section 4.3 showed why exponential asymptotics are undesirable for robust distance
approximation, they can in fact be useful for clustering problems, since the incredibly strong
attraction of the exponential kernel to minimizers aids the partition of data into discrete clusters.
For example, applying maximum log-likelihood estimation to Gaussian mixture models, a method
common in statistical learning, yields an iterative kernel density estimator in the form of
Equation 4.15. Similarly, the SoftMax function is used as an activation function in classifier
neural networks precisely because it is likely to pick a single “winning” category. The same
principle underlies the method of exponential tilting and other sampling methods motivated by
statistical mechanics.

(4.15)

In contrast, exponential asymptotics can be detrimental in non-clustering regression prob-
lems, which includes not just convolutional distance approximation but also many generative
models. One such class of generative models aim to sample from a target probability distribu-
tion p; by transforming samples from an easy-to-sample distribution py. Diffusion models in
particular parameterize the transformation as a time-dependent differential equation

dz 1

1
a—zz+(;—l)V10gpt(Z) te (O’l]

32



CuaPTER 4 From inside-outside to signed distance

where z is a random variable that represents a sample x ~ p; that has been perturbed by some
noise; one usually applies this model to training data to learn how to sample from the target
distribution [Liu et al. 2022; Scarvelis et al. 2023].

When the source distribution is a normal distribution from which we sample Gaussian noise,
at each timestep the transformed distribution is simply a mixture of (increasingly lower-variance)
Gaussians centered at the training points, and the score function has a closed-form expression
where

Vlog pi(z) —— —z
Y, exp (—3 Lol

where the first term can be seen as an approximation of argmin,, ||z—tx;||. Hence this expression
represents a vector that points from the current sample z to an estimate of argmin, ||z — tx; 11,
meaning the above ODE can be interpreted as an over-relaxation step that gradually pushes
samples towards the closest training point.

Raw diffusion models can hence only “memorize” their training data, and cannot generalize
effectively beyond their training data to generate novel results. In other words, just like how
convolutional distance approximations behave on point clouds, the point samples making up
the training data act as infinite attractors to which samples are inevitably drawn to, simply
reproducing the distribution represented by the discrete training data, rather than the true
distribution from which the training data is sampled, an observation made by many authors
[Liu et al. 2022; Somepalli et al. 2022; Pidstrigach 2022; Yoon et al. 2023; Scarvelis et al. 2023;
Carlini et al. 2023; Jain et al. 2024; Gu et al. 2025; Biroli et al. 2024]. The current state-of-the-art
involves training an extremely expensive neural network to approximate the score function,
trying to maintain a precarious balance between learning and overfitting.

In summary, many statistical methods fundamentally rely on the asymptotic behavior of the
exponential function, whose strong attraction to extrema can be useful for some problems, but
frustrating for others. Over the past several decades, researchers have tackled different versions
of this problem in different settings: in the context of surface reconstruction, for instance, Kolluri
[2008] derives sampling requirements under which the approximation converges, though doesn’t
propose a robust algorithm; other authors suggest anistropic kernels [Levin 1998; Adamson
and Alexa 2006; Zagorchev and Goshtasby 2012], spatially-varying kernel bandwidths [Wang
et al. 2008; Oztireli et al. 2009; Fuhrmann and Goesele 2014], hierarchical schemes [Ohtake et al.
2003], or regularized kernels [Chen et al. 2024]. The latter approach is similar to techniques
encouraging generalization in generative models [Scarvelis et al. 2023], though adding noise
to the model can easily lead to lower-quality output [Arjovsky et al. 2017]. The upshot is that
these asymptotics are based on scalar diffusion: to gain robust behavior, we must develop more
sophisticated strategies that, for example, use higher-order information.

1%
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Signed distance

We now present our algorithm, the signed heat method (SHM), for computing generalized signed
distance directly from broken geometry, providing not only an inside/outside classification
but also distance information. At a high level, the SHM is based on short-time heat diffusion,
but introduces an intermediate step that avoids the diffusion-based pitfalls of convolutional
distance approximations (Section 4.3). As a PDE-based approach, it also can compute (geodesic)
distance on curved domains, applies to many discretizations (Figures 5.4, 5.6), and is robust to
broken input with corrupted topology, geometry, and orientation (Figure 5.5) and to errors in
the underlying domain (Figure 5.1). More broadly, its variational, PDE-based approach enables
extensions not possible with other geodesic distance algorithms.

5.1 The asymptotics of vector diffusion

We consider an n-dimensional Riemannian manifold M i -
with metric g, and want to compute the signed distance ! Av
function ¢ for a submanifold Q c M. [

We begin by observing a well-known property of the !
gradient of SDFs: at points x € M away from the cut locus
of Q, the gradient of an SDF equals the normal to Q at the closest point to x on Q. Motivated
by this property, we consider parallel transport of vectors along shortest geodesics between
points on Q and points in M. In the plane, for example, the shortest geodesic y, ., between
two points p and q is simply a straight line connecting the two points; parallel-transporting a
tangent vector X € T,R? along y)—,q means transporting X so that it remains parallel to its initial
state throughouts its travel, and thus amounts to translating the initial vector X along y,_.,.
On a Riemannian manifold M, we can similarly ask that a tangent vector X € T,M maintain a
constant angle with the tangent of the geodesic during transport (inset). (For more description
of parallel transport, see Chapter 2.)

A remarkable fact is that vector heat diffusion yields parallel transport along shortest geodesics,
as diffusion time goes to zero. On R, this relation is intuitive: vector heat diffusion is equivalent
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more nonmanifold nonmanifold & self-intersecting

Fig. 5.1: Our method is robust not only to errors in the source geometry, but also in the domain mesh
itself. Here we obtain well-behaved SDFs even for meshes found “in the wild,” such as amateur-created
3D scans [Choi et al. 2016]. Even in cases where a notion of inside and outside is meaningless (such as
the rightmost mesh), our method fails gracefully — still producing a good signed distance approximation
near the input curve.

input 0-offset +0.1-offset +0.2-offset +0.3-offset +0.4-offset multiple

Fig. 5.2: By extracting level sets of generalized signed distance, we can convert broken, noisy, and
nonmanifold input geometry (far left) into closed, regular, manifold surfaces and evenly-spaced offset
surfaces.

to simply applying the scalar heat diffusion component-wise to an initial vector field, meaning
vectors get translated throughout R?, while their magnitudes decay according to the scalar heat
kernel k;(x,y) = (47t)"? exp (—Ilx — yl|*/4t). On manifolds, where the tangent space at every
point locally looks Euclidean, the vector heat kernel has the asymptotic expansion

kY ~ (4mt) " exp (—dist(x, y)2/4t) c(x, 1) Z FoM (x, 1)

i=0

where the magnitude is governed by the same exponential decay that describes the scalar heat
kernel in Euclidean space, and the leading term @} (x,y) is the parallel transport map Py,
that takes vectors at a point x to vectors at another point y along the shortest geodesic y,_,,
connecting the two (c(x, y) is a surface-related scalar-valued term) [Berline et al. 1992, Theorem
2.30].

Hence the first step of our algorithm is to diffuse the normals N of Q to the rest of the
domain M for a short time ¢t > 0, which extends information about surface orientation to the

rest of the domain. In particular we solve a vector-valued diffusion equation

4x, = NX, t>o0,

5.1
X = N (5.1)
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where A denotes the negative-definite connection Laplacian on M, and N g is a vector-valued
measure equal to zero away from Q, and determined by N for points in Q '
Ast — 0, the diffused vector X;(x) at each point x € M aligns with the
vector obtained via parallel transport of the normal N(x) at the closest
point X € Q, along a minimal geodesic y. Since parallel transport along
geodesics preserves tangency, this vector will be tangent to y itself — and
since traveling along y is the quickest way back to Q, it must be parallel to
the unsigned distance gradient V¢. Moreover, since we transport oriented
normals, we get the correct sign. We can hence normalize X; to obtain an approximation
Y; = X;/|IX:|| of the signed distance gradient.

The vector field Y; will not describe exact gradients for any SDF, due to both the diffusion
approximation — and more significantly — errors in the input. However, we can still look for
the function ¢ whose gradient is as close as possible, in a least-squares sense, to Y;. In particular,
we seek a minimizer for the problem

i Vo - Yl 5.2
Jmin [ 199 -] 62)

Using integration by parts, one can show that a minimizer satisfies the Poisson equation

Ap=V-Y, onM
9

(5.3)
n-Y; on oM,

an

where A denotes the negative-definite Laplace-Beltrami operator on M. The solution of Equa-
tion 5.3 is determined up to a constant shift, leaving us the freedom to to enforce either exact or
approximate interpolation of Q by a level set of ¢ (Section ??).
In summary, we arrive at the following algorithm:
1. Solve a vector diffusion equation %Xt = NVX; (Equation 5.1), which diffuses the normals of
Q for a small time ¢ > 0.

2. Evaluate the vector field Y; = X;/||X;||, yielding a unit vector field that approximates the
gradient of the (unknown) SDF.

3. Solve a Poisson equation A¢ =V - Y; (Equation 5.3), to find the function whose gradient
best matches Y;.
A diffusion-based approach is valuable be- diffuse normals - normalize vectors integrate
cause it extends in a robust way to imperfect ' s, Sz
geometry. For instance, if a curve has gaps, or %
a surface has holes, diffusion averages together % ‘7
normals at nearby points, providing smooth in-
terpolation of the observed data. Normalization

generalized
signed distance

The three stelp 0ofthe si‘%p(%dfheatt method.

1Intuitively, we use [ to denote a measure concentrateg I§h§'23,:51mﬁar 1n Spir1 an 1ndi unction. More
formally, for any Borel measurable set U C M, o (U) = /Q U dV, where dV is the usual volume measure on Q.
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Fig. 5.5: Our method provides robust and reliable signed distance approximation, failing gracefully in the
presence of significant topological, geometric, or orientation errors. Errors € in geodesic distance are
displayed relative to the exact polyhedral SDF of a finely sampled version of the original curve.

of gradients then ensure that we recover a dis-

tance approximation, rather than just a smooth

function.

offset surfaces The SHM ultimately relies on the exponential
asymptotics of heat kernel, much in the same way as
convolutional distance approximations (Chapter 4).
However, whereas convolutional distance approx-
imations tightly couple both distance accuracy and
reconstruction, and thus sacrifice their quality in
Fig. 5.4: Here we compute generalized signed both (Section 4.3), the SHM instead achieves good
distance to a badly broken surface (left) by =~ quality in both. The SHM’s intermediate step of
solving on a regular grid in R®. Contouring normalizing gradient vectors, like the original heat
this function yields well-behaved and evenly-  pethod for unsigned distance [Crane et al. 2013b],
spaced offset surfaces (right). partially decouples distance and reconstruction qual-
ity, while achieving especially good reconstruction by diffusing vector-valued rather than scalar-
valued data. And while the asymptotic behavior of short-time vector diffusion means that in
the limit t — 0, points simply inherit the normal at the closest point like in pseudonormal
distance (Section 4.3), in practice we take finite diffusion times ¢ > 0 that yield well-behaved
shape completions.

regular

Sid generalized

signed

5.2 Algorithm

The signed heat method mainly involves solving two sparse linear systems, corresponding to
Steps 1 and 3.
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Time discretization. As in past heat methods we discretize Equation 5.1 in time via one step
of backward Euler [Crane et al. 2013b; Sharp et al. 2019¢], and solve a linear equation

(id - tA)X; = X, (5.4)

for a single, fixed time t > 0 (where id is the identity).

Spatial discretization on triangle meshes. On triangle meshes, we use
edge-based operators for the vector diffusion step (Step I), which makes it
straightforward to discretize curve sources: we don’t have to map from the
tangent space of curve segments, which generically lie within triangle faces,
to the tangent space of vertices. We can instead discretize within single face using only intrinsic
operations, opening the possibility of further improving accuracy and robustness using intrinsic
Delaunay refinement [Gillespie et al. 2021].

We use Crouzeix-Raviart (CR) basis functions, which associate each edge
ij € E with a facewise linear function ¢;; : M — R interpolating the value 1 at
the midpoint of ij, and 0 at all other edge midpoints (inset). A corresponding
basis for vector fields is expressed by identifying tangent vectors with complex
numbers. In particular, at each edge ij we choose a coordinate system such
that 1 and the imaginary unit 1 correspond to é; and é;, resp. The function
i = @j; + 01 then defines a basis vector field parallel to the edge, and zi;; describes a locally
supported vector field parallel to z € C (right inset).

The discrete algorithm amounts to solving two sparse linear systems. First we solve the
discrete vector heat equation, which uses the discrete Crouzeix-Raviart connection Laplacian [V
and mass matrix M,

(M + )X = Xo, (5.5)

obtaining a diffused vector field X. Following Sharp et al. [2019¢, Section 7.3], we let t = h?,
where h is the mean distance between nodes — in our case, edge midpoints, yielding half the
mean edge length.

i Next, we average the diffused vectors X to each face ijk € F via Xj :=

Xijk (Xij + Xjk + Xki)/3 (taking care to express all vectors in the same basis), and
b compute unit vectors Yjr := Xy /[|X;jk|| which represent the gradient of our
(generalized) SDF. Finally, to obtain the SDF ¢ € RI"! at vertices, we solve a sparse
linear system

k

Cop=h (5.6)

where C is the cotan Laplacian, b € RVl is a vector of discrete divergences.

Additional discretizations. Since the method is based purely on intrinsic PDEs, these equa-
tions can be applied not just on triangle meshes, but virtually any data structure, in any dimension:
all we need is a divergence operator and Laplacian defined on the data structure, and we simply
take advantage of Laplacians developed in previous work [Bunge et al. 2020; Coeurjolly and
Lachaud 2022; Sharp and Crane 2020a; Sharp et al. 2019c].
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polygon meshes digital surfaces

Fig. 5.6: Our method extends to polygon meshes, point clouds, and digital surfaces. Digital surface
meshes are from Coeurjolly and Levallois [2015].

5.3 Results

Our method applies out of the box to nonmanifold and nonorientable i,
meshes (inset), since all our differential operators are local and de- T, <
fined per-face, and hence oblivious to any nonmanifold features. ”m‘“;;w““;i§
One natural use case for generalized signed distance is to contour

broken geometry, and generate accurate fixed-distance offsets (Figures 5.12, 5.2, 5.4). Generating
such offsets from imperfect geometry is useful, for example, for 3D printing, or for downstream
mesh processing tasks that require closed or manifold surfaces. One can also “inflate” or
“shrink” shapes by taking positive or negative offsets — and combining these two operations
in sequence can be used to simplify high-frequency features of broken shapes as if they were
whole (Figure 5.7).

imperfect curve :
selection e noisy scan

Fig.5.8: Broken curves easily arise from attempting
to draw curves on surfaces of high genus, with

. o overhangs, and with holes and scanner noise. Our
Fig. 5.7: One can simplify high-frequency features otpod yields signed distance functions robust to

of broken curves and surfaces by taking consec-  tpqce challenges. (Scanned bench from from Choi
utive positive/negative offsets of a generalized ., | [2016].)

signed distance function, akin to dilation/erosion.

Accuracy and performance. We compare against the unsigned heat method (UHM) of Crane
et al. [2013b], which provides a useful reference point since nearly all work on geodesic distance
algorithms from the past decade compares against this method. As a more recent reference
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Fig. 5.10: Distribution of error in distance approx-
imation for a perfect, unbroken curve on a high-
and low-quality mesh (top/bottom). Both meshes
have about 100k faces. Inset numbers on SDF and
error plots indicate compute time and mean er-
ror (resp.). Overall our method is quite compara-
ble to the original heat method, and less accurate
than BF on the low-quality mesh — but about 4-5x
faster.
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Fig. 5.9: We observe approximately linear conver-
gence in distance accuracy on a benchmark of un-
broken (closed) curves on 44 different meshes. The
legend shows median orders of accuracy. Note
that if we omit the zero set constraint, enabling
us to re-use both factorizations, our method and
UHM become 1-2 orders of magnitude faster.

point, we also compare with the convex formulation of Belyaev and Fayolle [2020] (labeled
BF). Since neither method directly handles curve sources, we either integrate the initial scalar
heat distribution against hat functions (for UHM) or simply use the set of curve vertices as the
source set (for BF). (Methods that directly handle curve sources do not have an open source
implementation [Bommes and Kobbelt 2007], or do not include curve sources in their public
release [Trettner et al. 2021].) Finally, since BF must constrain the zero set, we impose the same
constraints on UHM/SHM, and do not pre-factor any matrices. Note, however, that for multiple
source terms, heat methods can achieve about two orders of magnitude speedup by omitting
factorization [Crane et al. 2013b, Table 1].

Planar domains. As noted by Crane et al. [2013b, Figure 21], even exact polyhedral distance
(including MMP) provides only a 2nd-order accurate estimate of true (smooth) geodesic distance,
due to errors in the approximation of the domain itself. To avoid conflating these two sources
of error, we first consider closed, planar curves — where the exact SDF is easily computed via
closest-point queries [Sawhney et al. 2020], and sign can unambiguously be determined via
standard inside/outside tests [Haines 1994b]. As seen in Figure 5.10, our method is slightly
slower but slightly more accurate than UHM. Without sharpening, it is not as accurate as BF—
but is an order of magnitude faster. Moreover, BF must trade off between bias near the boundary
[Edelstein et al. 2023, Figure 3, left], or distortion in the presence of curve sources, depending
on whether Hessian regularization is omitted or included (resp.).
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Fig. 5.11: We can mix and match signed and
unsigned distance, selectively treating open

Surface domains. We next consider closed curves
on surface meshes. Here we can no longer obtain
the true distance on an unknown underlying smooth
surface; we hence compute “ground truth” distance
as the exact polyhedral distance to a finely-sampled
version of the input curve (100 samples per curve
edge) using MMP [Mitchell et al. 1987], which itself
has O(h?) error. We plot convergence and solve
times in Figure 5.9. We observe that our method
has approximately linear convergence in mean edge
length, with better consistency on curve sources
compared to other methods. We find the same trend

curves as either broken region boundaries, or
as literal open curves. We can also incorporate
distance to isolated points.

in solve times as in Section 5.3.

Completion of broken geometry. Finally, we

compare against the end-to-end pipeline of repairing
broken geometry, computing unsigned distance to the fixed geometry, and signing the unsigned
distance. In particular, we use the surface winding numbers (SWN) introduced in Chapter 3 to
contour broken curves, and compute exact polyhedral distance using MMP [Mitchell et al. 1987]
using the curve vertices as the source set. As input surface domains, we use the meshes with
~5k vertices from the same dataset as above. As input curves, we take level sets of five different
low-frequency Laplacian eigenfunctions, and add geometric and topological errors by taking
the union of the curves with their offsets (found by taking boundaries of triangle strips), and

deleting about 50% of the curve at random intervals.
The repair-distance-sign pipeline is particularly
sensitive to errors in the input, since any errors
made during contouring are permanent and will de-
stroy the quality of the final SDF no matter how
accurate the subsequent distance computation. In
particular, contouring the winding number is no-
toriously difficult, and often leads to misclassified
regions (Figure 5.14). Though Section ?? suggests a
rounding procedure, it remains unclear which half-
integer level set to take as the boundary between
inside and outside; we use the values of the rounded
winding number function that appear most often
along the input curves, though this results in 12%
of examples with >50% of surface area misclassified.
We also try contouring winding number according
to the average of the winding number function along

winding number

4029 4020 £09° K00

Fig. 5.12: Top: Generalized winding number
(GWN) cannot be used for offset surfaces,
since it provides only a smooth indicator func-
tion — and not a signed distance. Bottom: Our
generalized signed distance (GSD) provides
much nicer offsets on the same broken mesh.

the input curves, but we find similar results. In contrast, our method achieves greater robustness
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generalized signed distance

offset
surfaces

Fig. 5.13: GWN completes surfaces with saddle-
shaped harmonic patches that exhibit poor nor-
mal continuity with the observed geometry (across
many contour values). Our method directly incor-
porates normal information, providing more plau-
sible reconstruction even for large holes.
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Fig. 5.14: We compare, on 220 examples, the accu-
racy of GSD versus a hybrid scheme that repairs
broken geometry using winding numbers, com-
putes unsigned distance to the repaired geometry,
then signs the unsigned distance. Winding num-
bers are worse at classifying inside/outside, regard-
less of contouring method. As a result, the hybrid
scheme yields about 3x lower distance accuracy on
average (0.11 vs. 0.04 L; error, resp.), even though
it benefits from exact distance (via MMP).

by averaging normal vectors over the whole domain. The repair-distance-sign pipeline is also
about 10x more expensive due to its intermediate steps; SWN alone has cost asymptotically

equivalent the SHM.

As seen in Figure 5.13 we also obtain more natural surface completion than GWN, which
for general surfaces is hard to contour with any single level set value. Similar to spline interpo-
lation, the zero set of GSD nicely matches both positions and normals along hole boundaries.
Here meshes for both methods are extracted using the marching tetrahedra implementation in

libigl [Jacobson et al. 2018].
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CHAPTERG6

Proposed Work

Section 6.1 proposes a pointwise evaluation method for computing generalized signed distance
similar to the output of Feng and Crane [2024]. In Section 6.2, I present my planned timeline to
finish this work in time for graduation in spring 2026.

6.1 Instant generalized signed distance

The robustness of the Signed Heat Method in Chapter 5 comes from solving a global problem,
in particular by making use of a well-behaved, globally-supported extension of higher-order
information about the input geometry. Currently we solve this global problem by solving
a global linear system defined on a spatial discretization of the domain: this computational
paradigm is especially effective for dense evaluations of generalized signed distance — meaning
simultaneous evaluation at many query points throughout the domain — since it makes use
of spatial coherence between query points, and allows improved amortized performance over
repeated solves re-using the same matrix factorizations.

On the other hand, many applications in computer vision, simulation, and rendering would
benefit from an output-sensitive algorithm for generalized signed distance that answers isolated
pointwise queries, where each pointwise query is optimized to be as fast as possible. Since
we wish to support queries at arbitrary points, this latter paradigm also implies no spatial
discretization of the domain, which would be especially beneficial for the large-scale, intricate
scenes often encountered in vision applications — where meshing would be especially memory-
and compute-heavy, perhaps even infeasible.

Unfortunately, directly adapting the Signed Heat Method to support efficient pointwise
queries proves to be impossible. At first, it appears the Signed Heat Method boils down to
solving the Poisson problem

Ap=V-Y,

where Y; := X;/||X;|| is the normalized version of the vector field solution obtained from the
initial vector diffusion step. It’s tempting to turn this Poisson equation into the corresponding
integral equation to gain the computational flexibility we ask for, but Green’s representation
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formula can only be extended to infinite regions if the solution decays to zero at infinity [Brebbia
et al. 1984, §2.10], whereas a distance function goes to infinity at infinity. Likewise, the integral
equation

[ [8G(x2) o
500 = [ %2240 - 600020

while valid on any finite domain M using an appropriate fundamental solution G(x,y), is
recursive in ¢: the first term assumes we already know the value of the solution ¢ on the
domain boundary oM. (In contrast, the convolutional distance formulas in Chapter 4 do exist
as boundary integrals, because through exponentiation the solution does have proper decay at
infinity.)

While the convolutional distance approximations introduced in Chapter 4 exhibit the perfor-
mance benefits we desire, unfortunately Section 4.3 showed that they do not provide generalized
signed distance to point clouds. Below are two approaches I am currently pursuing to extend
these methods to ones that do produce generalized signed distance:

dz+ /M G(x.y) (V- Y)) (y) dy,

Local fitting of geometric proxies. Another interpretation of convolutional formulas is that
they give a good global estimate as long as the local estimates they blend together — in particular,
the ones represented by h in Equation 4.14 — are accurate. The self-normalized convolutional
formula in Equation 4.14 is simply a general-purpose method of smoothly blending together
local function estimates (the h’s) into a smooth global function. So we can solve our problem if
we compute the local approximations really well; we also sidestep the issue of how to set A’s
value, since if we are confident the local estimates are accurate, we should simply set A as large
as possible.

Our first experiments in this vein fit torii to neighborhoods around each point, where each
torus locally approximates the surface while representing a geometry proxy to which it is easy
to compute distance (Figure 6.1).

e e et
RAORR

L

Fig. 6.1: Experiments, implemented in a shader, of blending together distance approximations to torii.
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The results are promising, but it is also clear that the method of local approximation needs
to be improved to handle sharp features and other complex geometry. There is a plethora of
classical statistical tools for data fitting, but picking just one method feels risky: for any estimator,
one can probably find a class of data for which that particular estimator doesn’t work well. Thus,
next steps focus on improving local data-fitting by learning from data.

Learning spatially-varying kernel bandwidths. Another approach to generalizing convo-
lutional distance approximations is to compute spatially-varying kernel bandwidths that ideally
interpolate points if the query point is close to the input point cloud, or where the point cloud
is sparsely sampled, while using smaller bandwidth (higher 1) further away or in regions of
high sample density. For now, I think this approach is less promising than the former, since it
necessarily sacrifices distance accuracy.

6.2 Timeline

Below is a timeline for my proposed work, culminating with an expected thesis defense in spring
of 2026.

OCTOBER 2025 — JANUARY 2026: Finish ongoing work on instant signed distance, and submit
to SIGGRAPH 2026.

JAN. 2026 — APRIL 2026: Continue investigating “maximum distance functions”, a topic I
started in Spring 2025, and finish an unrelated project on curve reconstruction (and possibly
a project on neural Laplacians).

APRIL 2026 — MAY 2026: Write thesis and prepare thesis presentation.
May 2026: Defend thesis.

47



CHAPTER 6 Proposed Work

48



CHAPTER 7

Bibliography

Rémi Abgrall. 2022. Evaluating a distance function. arXiv:2211.02319 [math.NA] https:
//arxiv.org/abs/2211.02319 4.2

Anders Adamson and Marc Alexa. 2006. Anisotropic point set surfaces. In Proceedings of the 4th
International Conference on Computer Graphics, Virtual Reality, Visualisation and Interaction in
Africa (Cape Town, South Africa) (AFRIGRAPH ’06). Association for Computing Machinery,
New York, NY, USA, 7-13. https://doi.org/10.1145/1108590.1108592 4.4

M. Alexa, J. Behr, D. Cohen-Or, S. Fleishman, D. Levin, and C.T. Silva. 2001. Point set surfaces.
In Proceedings Visualization, 2001. VIS °01. 21-29, 537. https://doi.org/10.1109/VISUAL.
2001.964489 4.2,4.3

Martin Arjovsky, Soumith Chintala, and Léon Bottou. 2017. Wasserstein generative adversarial
networks. In Proceedings of the 34th International Conference on Machine Learning - Volume 70
(Sydney, NSW, Australia) (ICML’17). JMLR.org, 214-223. 4.4

J Andreas Beerentzen. 2005. Robust generation of signed distance fields from triangle meshes. In
Fourth International Workshop on Volume Graphics, 2005. IEEE, 167-239. 2.4

Alexander Belyaev and Pierre-Alain Fayolle. 2020. An ADMM-based scheme for distance function
approximation. Numerical Algorithms 84 (2020), 14 pages. https://doi.org/10.1007/
$11075-019-00789-5 5.3

Alexander Belyaev and Pierre-Alain Fayolle. 2024. Accuracy Improvements for Convolutional
and Differential Distance Function Approximations. arXiv:2412.09200 [math.NA] https:
//arxiv.org/abs/2412.09200 4.1, 4.2

Alexander G Belyaev and Pierre-Alain Fayolle. 2015. On variational and PDE-based distance
function approximations. In Computer Graphics Forum, Vol. 34. Wiley Online Library, 104-118.
4.1

Carl M. Bender and Steven A. Orszag. 1999. Advanced Mathematical Methods for Scientists and
Engineers I: Asymptotic Methods and Perturbation Theory. Springer New York, NY. https:
//doi.org/ttps://doi.org/10.1007/978-1-4757-3069-2 4.2, A.2

49


https://arxiv.org/abs/2211.02319
https://arxiv.org/abs/2211.02319
https://doi.org/10.1145/1108590.1108592
https://doi.org/10.1109/VISUAL.2001.964489
https://doi.org/10.1109/VISUAL.2001.964489
https://doi.org/10.1007/s11075-019-00789-5
https://doi.org/10.1007/s11075-019-00789-5
https://arxiv.org/abs/2412.09200
https://arxiv.org/abs/2412.09200
https://doi.org/ttps://doi.org/10.1007/978-1-4757-3069-2
https://doi.org/ttps://doi.org/10.1007/978-1-4757-3069-2

CuaprTER 7 Bibliography

Matthew Berger, Andrea Tagliasacchi, Lee Seversky, Pierre Alliez, Joshua Levine, Andrei Sharf,
and Claudio Silva. 2014. State of the Art in Surface Reconstruction from Point Clouds. In
EUROGRAPHICS star report (EUROGRAPHICS star report, Vol. 1). Strasbourg, France, 161-185.
https://doi.org/10.2312/egst.20141040 2.3

Nicole Berline, Ezra Getzler, and Michele Vergne. 1992. Heat Kernels and Dirac Operators (1 ed.).
Springer Berlin, Heidelberg. 5.1

Jack Binysh and Gareth P Alexander. 2018. Maxwell’s theory of solid angle and the construction
of knotted fields. Journal of Physics A: Mathematical and Theoretical 51, 38 (2018), 385202.
2.3.3

Giulio Biroli, Tony Bonnaire, Valentin de Bortoli, and Marc Mézard. 2024. Dynamical Regimes
of Diffusion Models. arXiv:2402.18491 [cs.LG] https://arxiv.org/abs/2402.18491 4.4

James F. Blinn. 1982. A Generalization of Algebraic Surface Drawing. ACM Trans. Graph. 1, 3
(July 1982), 235-256. https://doi.org/10.1145/357306.357310 4.3

Jean-Daniel Boissonnat and Frédéric Cazals. 2002. Smooth surface reconstruction via natural
neighbour interpolation of distance functions. Computational Geometry 22, 1 (2002), 185-
203. https://doi.org/10.1016/S0925-7721(01)00048-7 16th ACM Symposium on
Computational Geometry. 4.2, 4.3

David Bommes and Leif Kobbelt. 2007. Accurate Computation of Geodesic Distance Fields for
Polygonal Curves on Triangle Meshes. VMV, 151-160. 2.4, 5.3

C.A. Brebbia, J.C.F. Telles, and L. Wrobel. 1984. Boundary Element Techniques: Theory and
Applications in Engineering. Springer Berlin Heidelberg. 6.1

Alan Brunton and Lubna Abu Rmaileh. 2021. Displaced Signed Distance Fields for Additive
Manufacturing. ACM Trans. Graph. 40, 4, Article 179 (jul 2021), 13 pages. https://doi.
org/10.1145/3450626.3459827 2.4

Astrid Bunge, Philipp Herholz, Misha Kazhdan, and Mario Botsch. 2020. Polygon Laplacian
Made Simple. Computer Graphics Forum 39, 2 (2020), 303-313. https://doi.org/10.1111/
cgf . 13931 arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.13931 5.2

Fatih Calakli and Gabriel Taubin. 2011. SSD: Smooth Signed Distance Surface Reconstruction. In
Computer Graphics Forum, Vol. 30. Wiley Online Library, The Eurographics Association and
Blackwell Publishing Ltd., 1993-2002. https://doi.org/10.1111/7.1467-8659.2011.
02058.x 2.4

Nicholas Carlini, Jamie Hayes, Milad Nasr, Matthew Jagielski, Vikash Sehwag, Florian Tramer,
Borja Balle, Daphne Ippolito, and Eric Wallace. 2023. Extracting Training Data from Diffusion
Models. arXiv:2301.13188 [cs.CR] https://arxiv.org/abs/2301.13188 4.4

J. C. Carr, R. K. Beatson, J. B. Cherrie, T. J. Mitchell, W. R. Fright, B. C. McCallum, and T. R.
Evans. 2001. Reconstruction and representation of 3D objects with radial basis functions. In
Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques
(SIGGRAPH °01). Association for Computing Machinery, New York, NY, USA, 67-76. https:

50


https://doi.org/10.2312/egst.20141040
https://arxiv.org/pdf/1805.10358.pdf
https://arxiv.org/pdf/1805.10358.pdf
https://arxiv.org/abs/2402.18491
https://doi.org/10.1145/357306.357310
https://doi.org/10.1016/S0925-7721(01)00048-7
https://doi.org/10.1145/3450626.3459827
https://doi.org/10.1145/3450626.3459827
https://doi.org/10.1111/cgf.13931
https://doi.org/10.1111/cgf.13931
https://doi.org/10.1111/j.1467-8659.2011.02058.x
https://doi.org/10.1111/j.1467-8659.2011.02058.x
https://arxiv.org/abs/2301.13188
https://doi.org/10.1145/383259.383266
https://doi.org/10.1145/383259.383266
https://doi.org/10.1145/383259.383266

CuapTER 7 Bibliography

//doi.org/10.1145/383259.383266 4.3

Angel Chang, Angela Dai, Thomas Funkhouser, Maciej Halber, Matthias Niessner, Manolis
Savva, Shuran Song, Andy Zeng, and Yinda Zhang. 2017. Matterport3d: Learning from rgb-d
data in indoor environments. arXiv:1709.06158 (2017). 2.3.3

Hanyu Chen, Bailey Miller, and Ioannis Gkioulekas. 2024. 3D Reconstruction with Fast Dipole
Sums. ACM Trans. Graph. 43, 6, Article 192 (Nov. 2024), 19 pages. https://doi.org/10.
1145/3687914 4.1,4.3,4.4

Vladimir Chernov and Yuli B. Rudyak. 2009. On generalized winding numbers. St. Petersburg
Mathematical Journal 20, 5 (2009), 837-849. 2.3.3

Cheng Chi and Shuran Song. 2021. GarmentNets: Category-Level Pose Estimation for Garments
via Canonical Space Shape Completion. In The IEEE International Conference on Computer
Vision (ICCV). 2.3.3

David RJ Chillingworth. 1972. Winding numbers on surfaces, I. Math. Ann. 196, 3 (1972), 218-249.
2.3.3

Sungjoon Choi, Qian-Yi Zhou, Stephen Miller, and Vladlen Koltun. 2016. A Large Dataset of
Object Scans. arXiv:1602.02481 (2016). 3.11,5.1,5.8

David Coeurjolly and Jacques-Olivier Lachaud. 2022. A Simple Discrete Calculus for Digital
Surfaces. In IAPR Second International Conference on Discrete Geometry and Mathematical
Morphology, Etienne Baudrier, Benoit Naegel, Adrien Krahenbiihl, and Mohamed Tajine (Eds.).
Springer, LNCS. 5.2

David Coeurjolly and Jérémy Levallois. 2015. VolGallery. https://github.com/dcoeurjo/
VolGallery. 5.6

Julian D Cole. 1951. On a quasi-linear parabolic equation occurring in aerodynamics. Quarterly
of applied mathematics 9, 3 (1951), 225-236. 4.1

Alvaro Collet, Ming Chuang, Pat Sweeney, Don Gillett, Dennis Evseev, David Calabrese, Hugues
Hoppe, Adam Kirk, and Steve Sullivan. 2015. High-quality streamable free-viewpoint video.
ACM Trans. Graph. 34, 4 (2015), 1-13. 2.3.3

Michael G Crandall and Pierre-Louis Lions. 1983. Viscosity solutions of Hamilton-Jacobi equa-
tions. Transactions of the American mathematical society 277, 1 (1983), 1-42. 4.1

Keenan Crane, Fernando de Goes, Mathieu Desbrun, and Peter Schroder. 2013a. Digital Geome-
try Processing with Discrete Exterior Calculus. In ACM SIGGRAPH 2013 courses (Anaheim,
California) (SSIGGRAPH ’13). ACM, New York, NY, USA, 126 pages. 2.2, 2.2

Keenan Crane, Clarisse Weischedel, and Max Wardetzky. 2013b. Geodesics in heat: A new
approach to computing distance based on heat flow. ACM Transactions on Graphics (TOG) 32,
5(2013), 1-11. 4.1,5.1,5.2, 5.3

Mathieu Desbrun, Eva Kanso, and Yiying Tong. 2006. Discrete differential forms for computa-
tional modeling. In ACM SIGGRAPH 2006 Courses. 39-54. 2.2

51


https://doi.org/10.1145/383259.383266
https://doi.org/10.1145/383259.383266
https://doi.org/10.1145/383259.383266
https://doi.org/10.1145/383259.383266
https://arxiv.org/pdf/1709.06158.pdf
https://arxiv.org/pdf/1709.06158.pdf
https://doi.org/10.1145/3687914
https://doi.org/10.1145/3687914
https://www.ams.org/journals/spmj/2009-20-05/S1061-0022-09-01075-9/S1061-0022-09-01075-9.pdf
https://arxiv.org/pdf/2104.05177.pdf
https://arxiv.org/pdf/2104.05177.pdf
https://link.springer.com/article/10.1007/BF01428050
https://github.com/dcoeurjo/VolGallery
https://github.com/dcoeurjo/VolGallery
https://hhoppe.com/fvv.pdf
https://dl.acm.org/doi/10.1145/2504435.2504442
https://dl.acm.org/doi/10.1145/2504435.2504442
https://dl.acm.org/doi/10.1145/1185657.1185665
https://dl.acm.org/doi/10.1145/1185657.1185665

CuaprTER 7 Bibliography

Manfredo P. do Carmo. 1992. Riemannian Geometry (1 ed.). 2.2

Manfredo P. Do Carmo. 2016. Differential Geometry of Curves & Surfaces (second ed.). Dover,
New York. 2.3.3

Jan Dvorak, Zuzana Kacerekova, Petr Vanécek, Lukas Hruda, and Libor Vasa. 2022. As-rigid-
as-possible volume tracking for time-varying surfaces. Computers & Graphics 102 (2022),
329-338. https://doi.org/10.1016/j.cag.2021.10.015 2.3.3

Michal Edelstein, Nestor Guillen, Justin Solomon, and Mirela Ben-Chen. 2023. A Convex Opti-
mization Framework for Regularized Geodesic Distances. In ACM SIGGRAPH 2023 Conference
Proceedings (Los Angeles, CA, USA) (SIGGRAPH ’23). Association for Computing Machinery,
New York, NY, USA, Article 2, 11 pages. https://doi.org/10.1145/3588432.3591523
5.3

Jeff Erickson and Kim Whittlesey. 2005. Greedy optimal homotopy and homology generators. In
SODA, Vol. 5. 1038-1046. 2.3.2,3.3

Leonhard Euler. 1781. De mensura angulorum solidorum. Acta Academiae Scientiarum Imperialis
Petropolitanae (1781), 31-54. 2.3.3

L.C. Evans. 1998. Partial Differential Equations. American Mathematical Society. 4.1, 4.2

Sergei Fedotov. 1999. Wave front for a reaction-diffusion system and relativistic Hamilton-Jacobi
dynamics. Phys. Rev. E 59 (May 1999), 5040-5044. Issue 5. https://doi.org/10.1103/
PhysRevE.59.5040 A.2

Nicole Feng and Keenan Crane. 2024. A Heat Method for Generalized Signed Distance. ACM
Trans. Graph. 43, 4, Article 92 (jul 2024), 16 pages. https://doi.org/10.1145/3658220 6

Nicole Feng, Mark Gillespie, and Keenan Crane. 2023. Perspectives on Winding Numbers. ACM
Transactions on Graphics (Supplemental) (2023). 2.3.3

Wendell H Fleming and Panagiotis E Souganidis. 1986. PDE-viscosity solution approach to some
problems of large deviations. Annali della Scuola Normale Superiore di Pisa-Classe di Scienze
13, 2 (1986), 171-192. A.2

M. L Freidlin. 1986. Geometric Optics Approach to Reaction-Diffusion Equations.
SIAM J. Appl. Math. 46, 2 (1986), 222-232.  https://doi.org/10.1137/0146016
arXiv:https://doi.org/10.1137/0146016 A.2

Simon Fuhrmann and Michael Goesele. 2014. Floating scale surface reconstruction. ACM Trans.
Graph. (2014). 4.4

Carl Friedrich Gauss. 1838. General Theory of Terrestrial Magnetism. (1838). https://hgss.
copernicus.org/articles/5/11/2014/hgss-5-11-2014.pdf 2.3.3

Mark Gillespie, Nicholas Sharp, and Keenan Crane. 2021. Integer Coordinates for Intrinsic
Geometry Processing. ACM Trans. Graph. 40, 6 (2021). 3.3, 5.2

Cindy M Goral, Kenneth E Torrance, Donald P Greenberg, and Bennett Battaile. 1984. Modeling
the interaction of light between diffuse surfaces. ACM SIGGRAPH computer graphics 18, 3

52


https://www.sciencedirect.com/science/article/pii/S0097849321002284
https://www.sciencedirect.com/science/article/pii/S0097849321002284
https://doi.org/10.1016/j.cag.2021.10.015
https://doi.org/10.1145/3588432.3591523
http://jeffe.cs.illinois.edu/pubs/pdf/gohog.pdf
https://doi.org/10.1103/PhysRevE.59.5040
https://doi.org/10.1103/PhysRevE.59.5040
https://doi.org/10.1145/3658220
https://doi.org/10.1137/0146016
https://hgss.copernicus.org/articles/5/11/2014/hgss-5-11-2014.pdf
https://hgss.copernicus.org/articles/5/11/2014/hgss-5-11-2014.pdf
https://dl.acm.org/doi/10.1145/964965.808601
https://dl.acm.org/doi/10.1145/964965.808601

CuapTER 7 Bibliography

(1984), 213-222. 2.3.3

Xiangming Gu, Chao Du, Tianyu Pang, Chongxuan Li, Min Lin, and Ye Wang. 2025. On
Memorization in Diffusion Models. arXiv:2310.02664 [cs.LG] https://arxiv.org/abs/
2310.02664 4.4

Xianfeng Gu and Shing-Tung Yau. 2003. Global conformal surface parameterization. In Euro-
graphics Symposium on Geometry Processing. 127-137. 3.1

Karthik S. Gurumoorthy and Anand Rangarajan. 2009. A Schrédinger Equation for the Fast
Computation of Approximate Euclidean Distance Functions. In Scale Space and Variational
Methods in Computer Vision, Xue-Cheng Tai, Knut Mgrken, Marius Lysaker, and Knut-Andreas
Lie (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 100-111. 4.2, 4.3

Eric Haines. 1994a. Point in Polygon Strategies. Academic Press Prof., Inc., USA, 24-46. 2.3.3
Eric Haines. 1994b. Point in Polygon Strategies. Graphics Gems 4, 1 (1994), 24-46. 2.4, 5.3

Eberhard Hopf. 1950. The partial differential equation u; + uu, = muy,. Communications on Pure
and Applied mathematics 3, 3 (1950), 201-230. 4.1

Yixin Hu, Qingnan Zhou, Xifeng Gao, Alec Jacobson, Denis Zorin, and Daniele Panozzo. 2018.
Tetrahedral Meshing in the Wild. ACM Trans. Graph. 37, 4, Article 60 (July 2018), 14 pages.
https://doi.org/10.1145/3197517.3201353 2.3.3

Saar Huberman, Amit Bracha, and Ron Kimmel. 2023. Deep Accurate Solver for the Geodesic
Problem. In International Conference on Scale Space and Variational Methods in Computer Vision.
Springer, 288-300. 2.4

Stephen P Humphries and Dennis Johnson. 1989. A generalization of winding number functions
on surfaces. Proc. of the London Math. Soc. 3, 2 (1989), 366—-386. 2.3.3

Alec Jacobson, Ladislav Kavan, and Olga Sorkine. 2013. Robust Inside-Outside Segmentation
using Generalized Winding Numbers. ACM Trans. Graph. 32, 4 (2013). 2.3.3,3.1, 4.2

Alec Jacobson, Daniele Panozzo, et al. 2018. libigl: A simple C++ geometry processing library.
https://libigl.github.io/. 5.3

Anubhav Jain, Yuya Kobayashi, Takashi Shibuya, Yuhta Takida, Nasir Memon, Julian Togelius,
and Yuki Mitsufuji. 2024. Classifier-Free Guidance inside the Attraction Basin May Cause
Memorization. arXiv:2411.16738 [cs.CV] https://arxiv.org/abs/2411.16738 4.4

Christina Karam, Kenjiro Sugimoto, and Keigo Hirakawa. 2019. Fast Convolutional Distance
Transform. IEEE Signal Processing Letters 26, 6 (2019), 853-857. https://doi.org/10.1109/
LSP.2019.2910466 4.2, 4.3

Michael Kazhdan, Matthew Bolitho, and Hugues Hoppe. 2006. Poisson Surface Reconstruction.
In Symposium on Geometry Processing (SGP "06). Eurographics Association, 61-70. 2.3.3, 4.1

Ron Kimmel and James A Sethian. 1998. Computing geodesic paths on manifolds. Proceedings of
the national academy of Sciences 95, 15 (1998), 8431-8435. 2.4

Ravikrishna Kolluri. 2008. Provably good moving least squares. ACM Trans. Algorithms 4, 2,

53


https://arxiv.org/abs/2310.02664
https://arxiv.org/abs/2310.02664
https://diglib.eg.org/handle/10.2312/SGP.SGP03.127-137
https://www.cs.toronto.edu/~jacobson/images/tetrahedral-meshing-in-the-wild-siggraph-2018-hu-et-al.pdf
https://doi.org/10.1145/3197517.3201353
https://londmathsoc.onlinelibrary.wiley.com/doi/pdf/10.1112/plms/s3-58.2.366
https://londmathsoc.onlinelibrary.wiley.com/doi/pdf/10.1112/plms/s3-58.2.366
https://arxiv.org/abs/2411.16738
https://doi.org/10.1109/LSP.2019.2910466
https://doi.org/10.1109/LSP.2019.2910466
https://hhoppe.com/poissonrecon.pdf

CuaprTER 7 Bibliography

Article 18 (May 2008), 25 pages. https://doi.org/10.1145/1361192.1361195 4.2, 4.2,
4.4

G. Kreisselmeier and R. Steinhauser. 1980. Systematic Control Design By Optimizing A Vec-
tor Performance Index. In Computer Aided Design of Control Systems, M. A. Cuenod (Ed.).
Pergamon, 113-117. https://doi.org/10.1016/B978-0-08-024488-4.50022-X 4.2

Pavel A Krutitskii. 2001. The jump problem for the Laplace equation. Applied Mathematics
Letters 14, 3 (2001), 353-358. 3.1

Joseph Louis Lagrange. 1798. Solutions de quelques problémes relatifs aux triangles sphériques,
avec une analyse compléte de ces triangles. 2.3.3

John M. Lee. 2012. Introduction to Smooth Manifolds (2 ed.). Springer New York, NY. 2.2

David Levin. 1998. The Approximation Power of Moving Least-Squares. Math. Comp. 67, 224
(1998), 1517-1531. http://www.jstor.org/stable/2584860 4.4

Moshe Lichtenstein, Gautam Pai, and Ron Kimmel. 2019. Deep eikonal solvers. In Scale Space and
Variational Methods in Computer Vision: 7th International Conference, SSVM 2019, Hofgeismar,
Germany, June 30-Fuly 4, 2019, Proceedings 7. Springer, 38—50. 2.4

Yaron Lipman. 2021. Phase Transitions, Distance Functions, and Implicit Neural Representations.
arXiv:2106.07689 [cs.LG] https://arxiv.org/abs/2106.07689 4.2, A, A.2

Shibo Liu, Ligang Liu, and Xiao-Ming Fu. 2025. Closed-form Generalized Winding Numbers
of Rational Parametric Curves for Robust Containment Queries. ACM Trans. Graph. 44, 4,
Article 75 (July 2025), 9 pages. https://doi.org/10.1145/3730886 4.2

Xingchao Liu, Chengyue Gong, and Qiang Liu. 2022. Flow Straight and Fast: Learning to
Generate and Transfer Data with Rectified Flow. arXiv:2209.03003 [cs.LG] https://arxiv.
org/abs/2209.03003 4.4

Richard H MacNeal. 1949. The solution of partial differential equations by means of electrical
networks. Ph. D. Dissertation. California Institute of Technology. 2.2

Abhishek Madan and David IW Levin. 2022. Fast evaluation of smooth distance constraints on
co-dimensional geometry. ACM Transactions on Graphics (TOG) 41, 4 (2022), 1-17. 4.2, 4.3

James Clerk Maxwell. 1881. A Treatise on Electricity and Magnetism. Vol. II. Oxford University
Press. 2.3.3

Margaret McIntyre and Grant Cairns. 1993. A new formula for winding number. Geometriae
Dedicata 46, 2 (1993), 149-159. 2.3.3

Joseph S. B. Mitchell, D. Mount, and C. Papadimitriou. 1987. The Discrete Geodesic Problem.
SIAM J. Comput. 16, 4 (1987), 647-668. 5.3

Patrick Mullen, Fernando De Goes, Mathieu Desbrun, David Cohen-Steiner, and Pierre Alliez.
2010. Signing the Unsigned: Robust Surface Reconstruction from Raw Pointsets. Computer
Graphics Forum 29, 5 (2010), 1733-1741. https://doi.org/10.1111/7.1467-8659.2010.
01782.x arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-8659.2010.01782.x 2.4

54


https://doi.org/10.1145/1361192.1361195
https://doi.org/10.1016/B978-0-08-024488-4.50022-X
https://www.sciencedirect.com/science/article/pii/S0893965900001610
http://www.jstor.org/stable/2584860
https://arxiv.org/abs/2106.07689
https://doi.org/10.1145/3730886
https://arxiv.org/abs/2209.03003
https://arxiv.org/abs/2209.03003
https://thesis.library.caltech.edu/1529/1/MacNeal_rh_1949.pdf
https://thesis.library.caltech.edu/1529/1/MacNeal_rh_1949.pdf
https://link.springer.com/article/10.1007/BF01264913
https://doi.org/10.1111/j.1467-8659.2010.01782.x
https://doi.org/10.1111/j.1467-8659.2010.01782.x

CuapTER 7 Bibliography

Lea Miiller, Ahmed A. A. Osman, Siyu Tang, Chun-Hao P. Huang, and Michael J. Black. 2021. On
Self-Contact and Human Pose. In Proceedings IEEE/CVF Conf. on Computer Vision and Pattern
Recognition (CVPR). 2.3.3

James R Munkres. 1984. Elements of Algebraic Topology (1st. ed.). CRC press. 2.3.2, 2.3.2

Ken Museth, David E Breen, Ross T Whitaker, and Alan H Barr. 2002. Level set surface editing
operators. In Proceedings of the 29th annual conference on Computer graphics and interactive
techniques. 330-338. 2.4

Ashish Myles, Nico Pietroni, and Denis Zorin. 2014. Robust Field-Aligned Global Parametrization.
ACM Trans. Graph. 33, 4 (2014). 3.3

De-zhi Ning, Bin Teng, Hai-tao Zhao, and Chun-ling Hao. 2010. A comparison of two methods
for calculating solid angle coefficients in a BIEM numerical wave tank. Engineering Analysis
with Boundary Elements 34, 1 (2010), 92-96. 2.3.3

Yutaka Ohtake, Alexander Belyaev, Marc Alexa, Greg Turk, and Hans-Peter Seidel. 2005. Multi-
level partition of unity implicits. In ACM SIGGRAPH 2005 Courses (Los Angeles, California)
(SIGGRAPH °05). Association for Computing Machinery, New York, NY, USA, 173-es. https:
//doi.org/10.1145/1198555.1198649 4.3

Y. Ohtake, A. Belyaev, and H.P. Seidel. 2003. A multi-scale approach to 3D scattered data
interpolation with compactly supported basis functions. In 2003 Shape Modeling International.
153-161. https://doi.org/10.1109/SMI.2003.1199611 4.4

Helen Oleynikova, Alexander Millane, Zachary Taylor, Enric Galceran, Juan Nieto, and Roland
Siegwart. 2016. Signed distance fields: A natural representation for both mapping and planning.
In RSS 2016 workshop: geometry and beyond-representations, physics, and scene understanding
for robotics. University of Michigan. 2.4

Stanley Osher, Ronald Fedkiw, and K Piechor. 2004. Level set methods and dynamic implicit
surfaces. Appl. Mech. Rev. 57, 3 (2004), B15-B15. 2.4

A. C. Oztireli, G. Guennebaud, and M. Gross. 2009. Feature Preserving Point
Set Surfaces based on Non-Linear Kernel Regression. = Computer Graphics Forum
28, 2 (2009), 493-501. https://doi.org/10.1111/3j.1467-8659.2009.01388.x
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-8659.2009.01388.x 4.2, 4.4

Jakiw Pidstrigach. 2022. Score-Based Generative Models Detect Manifolds.
arXiv:2206.01018 [stat. ML] https://arxiv.org/abs/2206.01018 4.4

Konstantin Poelke and Konrad Polthier. 2016. Boundary-aware Hodge decompositions for
piecewise constant vector fields. Computer-Aided Design 78 (2016), 126-136. 2.3.2

Inigo Quilez. 2008. Raymarching Signed Distance Fields. https://iquilezles.org/
articles/raymarchingdf/. 2.4

Bruce L Reinhart. 1960. The winding number on two manifolds. In Annales de ’institut Fourier,
Vol. 10. 271-283. 2.3.3

Bruce L Reinhart. 1963. Further remarks on the winding number. In Annales de ’institut Fourier,

55


https://arxiv.org/pdf/2104.03176.pdf
https://arxiv.org/pdf/2104.03176.pdf
https://dl.acm.org/doi/10.1145/2601097.2601154
https://www.sciencedirect.com/science/article/pii/S0955799709001386
https://www.sciencedirect.com/science/article/pii/S0955799709001386
https://doi.org/10.1145/1198555.1198649
https://doi.org/10.1145/1198555.1198649
https://doi.org/10.1109/SMI.2003.1199611
https://doi.org/10.1111/j.1467-8659.2009.01388.x
https://arxiv.org/abs/2206.01018
https://www.mi.fu-berlin.de/en/math/groups/ag-geom/publications/db/2016-poelke_polthier-pc_vector_fields_on_simplicial_surfaces-preprint-comp.pdf
https://www.mi.fu-berlin.de/en/math/groups/ag-geom/publications/db/2016-poelke_polthier-pc_vector_fields_on_simplicial_surfaces-preprint-comp.pdf
https://iquilezles.org/articles/raymarchingdf/
https://iquilezles.org/articles/raymarchingdf/

CuaprTER 7 Bibliography

Vol. 13. 155-160. 2.3.3

Marzia Riso, Giacomo Nazzaro, Enrico Puppo, Alec Jacobson, Qingnan Zhou, and Fabio Pellacini.
2022. BoolSurf: Boolean Operations on Surfaces. ACM Trans. Graph. 41, 6 (2022), 1-13. 2.3.2,
2.3.3,3.3

Rohan Sawhney and Keenan Crane. 2017. Boundary First Flattening. ACM Trans. Graph. 37, 1,
Article 5 (dec 2017), 14 pages. https://doi.org/10.1145/3132705 3.1

Rohan Sawhney, Ruihao Ye, Johann Korndoerfer, and Keenan Crane. 2020. FCPW: Fastest Closest
Points in the West. 2.4, 5.3

Christopher Scarvelis, Haitz Saez de Ocariz Borde, and Justin Solomon. 2023. Closed-Form
Diffusion Models. arXiv:2310.12395 [cs.LG] https://arxiv.org/abs/2310.12395 4.4

Giinter Schwarz. 2006. Hodge Decomposition-A method for solving boundary value problems.
Springer. 2.2

Manu Sethi, Anand Rangarajan, and Karthik Gurumoorthy. 2012. The Schrédinger distance
transform (SDT) for point-sets and curves. In 2012 IEEE Conference on Computer Vision and
Pattern Recognition. IEEE, 198-205. 4.2, 4.3

Nicholas Sharp and Keenan Crane. 2020a. A Laplacian for Nonmanifold Triangle Meshes.
Computer Graphics Forum (SGP) 39, 5 (2020). 5.2

Nicholas Sharp and Keenan Crane. 2020b. You Can Find Geodesic Paths in Triangle Meshes by
Just Flipping Edges. ACM Trans. Graph. 39, 6 (2020). 3.3

Nicholas Sharp, Keenan Crane, et al. 2019a. GeometryCentral: A modern C++ library of data
structures and algorithms for geometry processing. https://geometry-central.net/.
(2019). 2.2

Nicholas Sharp, Mark Gillespie, and Keenan Crane. 2021. Geometry Processing with Intrinsic
Triangulations. (2021). 3.3

Nicholas Sharp, Yousuf Soliman, and Keenan Crane. 2019b. Navigating Intrinsic Triangulations.
ACM Trans. Graph. 38, 4 (2019). 3.3

Nicholas Sharp, Yousuf Soliman, and Keenan Crane. 2019c. The Vector Heat Method. ACM
Trans. Graph. 38, 3 (2019). 4.2,5.2,5.2,5.2

M. Shimrat. 1962. Algorithm 112: Position of Point Relative to Polygon. Commun. ACM 5, 8
(aug 1962), 434. https://doi.org/10.1145/368637.368653 2.3.3

Gowthami Somepalli, Vasu Singla, Micah Goldblum, Jonas Geiping, and Tom Goldstein. 2022.
Diffusion Art or Digital Forgery? Investigating Data Replication in Diffusion Models.
arXiv:2212.03860 [cs.LG] https://arxiv.org/abs/2212.03860 4.4

Ryan J. Tibshirani, Samy Wu Fung, Howard Heaton, and Stanley Osher. 2024. Laplace
Meets Moreau: Smooth Approximation to Infimal Convolutions Using Laplace’s Method.
arXiv:2406.02003 [math.OC] https://arxiv.org/abs/2406.02003 4.2, 4.2

Y. Tong, P. Alliez, D. Cohen-Steiner, and M. Desbrun. 2006. Designing Quadrangulations with

56


https://pellacini.di.uniroma1.it/publications/boolsurf22/boolsurf22-paper.pdf
https://arxiv.org/pdf/1704.06873.pdf
https://doi.org/10.1145/3132705
https://arxiv.org/abs/2310.12395
https://www.cs.cmu.edu/~kmcrane/Projects/NonmanifoldLaplace/NonmanifoldLaplace.pdf
http://www.cs.cmu.edu/~kmcrane/Projects/FlipOut/FlipOut.pdf
http://www.cs.cmu.edu/~kmcrane/Projects/FlipOut/FlipOut.pdf
https://geometry-central.net/
https://geometry-central.net/
https://geometry-central.net/
https://nmwsharp.com/media/papers/int-tri-course/int_tri_course.pdf
https://nmwsharp.com/media/papers/int-tri-course/int_tri_course.pdf
http://www.cs.cmu.edu/~kmcrane/Projects/NavigatingIntrinsicTriangulations/paper.pdf
https://dl.acm.org/doi/10.1145/368637.368653
https://doi.org/10.1145/368637.368653
https://arxiv.org/abs/2212.03860
https://arxiv.org/abs/2406.02003
https://diglib.eg.org/handle/10.2312/SGP.SGP06.201-210
https://diglib.eg.org/handle/10.2312/SGP.SGP06.201-210
https://diglib.eg.org/handle/10.2312/SGP.SGP06.201-210

CuapTER 7 Bibliography

Discrete Harmonic Forms. In Symposium on Geometry Processing (SGP '06). Eurographics
Association, 201-210. 3.1

Philip Trettner, David Bommes, and Leif Kobbelt. 2021. Geodesic distance computation via
virtual source propagation. In Computer graphics forum, Vol. 40. Wiley Online Library, 247-260.
24,53

Sathamangalam R Srinivasa Varadhan. 1967. On the behavior of the fundamental solution of the
heat equation with variable coefficients. Communications on Pure and Applied Mathematics
20, 2 (1967), 431-455. 4.1,4.2, A.1, A.2

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, L ukasz Kaiser, and Illia Polosukhin. 2017. Attention is All you Need. In Ad-
vances in Neural Information Processing Systems, 1. Guyon, U. Von Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (Eds.), Vol. 30. Curran As-
sociates, Inc. =~ https://proceedings.neurips.cc/paper_files/paper/2017/file/
3f5ee243547dee91£fbd0563c1c4al845aa-Paper.pdf 4.4

Eric Veach and Leonidas J Guibas. 1995. Optimally combining sampling techniques for Monte
Carlo rendering. In Proceedings of the 22nd annual conference on Computer graphics and
interactive techniques. 419-428. 2.3.3

Delio Vicini, Sébastien Speierer, and Wenzel Jakob. 2022. Differentiable Signed Distance Function
Rendering. Transactions on Graphics (Proceedings of SIGGRAPH) 41, 4 (July 2022), 125:1-125:18.
https://doi.org/10.1145/3528223.3530139 2.4

Hao Wang, Carlos E. Scheidegger, and Claudio T. Silva. 2008. Optimal bandwidth selection
for MLS surfaces. In 2008 IEEE International Conference on Shape Modeling and Applications.
111-120. https://doi.org/10.1109/SMI.2008.4547957 4.4

Zimo Wang, Cheng Wang, Taiki Yoshino, Sirui Tao, Ziyang Fu, and Tzu-Mao Li. 2025. HotSpot:
Signed Distance Function Optimization with an Asymptotically Sufficient Condition. In CVPR.
4.2

Hongyi Xu and Jernej Barbic. 2014. Signed Distance Fields for Polygon Soup Meshes. In Proceed-
ings of Graphics Interface 2014 (Montreal, Quebec, Canada) (GI '14). Canadian Information
Processing Society, CAN, 35-41. 2.4

Kaizhi Yang, Liu Dai, Isabella Liu, Xiaoshuai Zhang, Xiaoyan Sun, Xuejin Chen, Zexiang Xu,
and Hao Su. 2025. IMLS-Splatting: Efficient Mesh Reconstruction from Multi-view Images
via Point Representation. ACM Trans. Graph. 44, 4, Article 83 (July 2025), 11 pages. https:
//doi.org/10.1145/3731210 4.2

Lior Yariv, Omri Puny, Natalia Neverova, Oran Gafni, and Yaron Lipman. 2023. Mosaic-SDF for
3D Generative Models. arXiv preprint arXiv:2312.09222 (2023). 2.4

TaeHo Yoon, Joo Young Choi, Sehyun Kwon, and Ernest K. Ryu. 2023. Diffusion Probabilistic Mod-
els Generalize when They Fail to Memorize. In ICML 2023 Workshop on Structured Probabilistic
Inference & Generative Modeling. https://openreview.net/forum?id=shciCbSkoh 4.4

57


https://diglib.eg.org/handle/10.2312/SGP.SGP06.201-210
https://diglib.eg.org/handle/10.2312/SGP.SGP06.201-210
https://diglib.eg.org/handle/10.2312/SGP.SGP06.201-210
https://diglib.eg.org/handle/10.2312/SGP.SGP06.201-210
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://dl.acm.org/doi/10.1145/218380.218498
https://dl.acm.org/doi/10.1145/218380.218498
https://doi.org/10.1145/3528223.3530139
https://doi.org/10.1109/SMI.2008.4547957
https://doi.org/10.1145/3731210
https://doi.org/10.1145/3731210
https://openreview.net/forum?id=shciCbSk9h

CuaprTER  Bibliography

Jihun Yu and Greg Turk. 2013. Reconstructing surfaces of particle-based fluids using anisotropic
kernels. ACM Trans. Graph. 32, 1, Article 5 (Feb. 2013), 12 pages. https://doi.org/10.
1145/2421636.2421641 4.3

Lyubomir G. Zagorchev and Arthur Ardeshir Goshtasby. 2012. A Curvature-Adaptive Implicit
Surface Reconstruction for Irregularly Spaced Points. IEEE Transactions on Visualization and
Computer Graphics 18, 9 (2012), 1460-1473. https://doi.org/10.1109/TVCG.2011.276
4.4

Qingnan Zhou, Eitan Grinspun, Denis Zorin, and Alec Jacobson. 2016. Mesh Arrangements
for Solid Geometry. ACM Trans. Graph. 35, 4, Article 39 (July 2016), 15 pages. https:
//doi. org/10.1145/2897824.2925901 2.3.3,3.3

58


https://doi.org/10.1145/2421636.2421641
https://doi.org/10.1145/2421636.2421641
https://doi.org/10.1109/TVCG.2011.276
https://www.cs.columbia.edu/cg/mesh-arrangements/mesh-arrangements-for-solid-geometry-siggraph-2016-zhou-et-al.pdf
https://www.cs.columbia.edu/cg/mesh-arrangements/mesh-arrangements-for-solid-geometry-siggraph-2016-zhou-et-al.pdf
https://doi.org/10.1145/2897824.2925901
https://doi.org/10.1145/2897824.2925901

APPENDIX A

The signed Hopf-Cole transformation

Here we give a derivation of the signed Hopf-Cole transformation. The derivation in Section A.1
is inspired by the formulation of the viscous signed eikonal equation in Theorems 4 & 5 of Lipman
[2021]. While Lipman [2021] shows its equivalence to a screened Poisson equation using a signed
Hopf-Cole transformation, its boundary conditions and the validity of the transformation when
is Q open are unclear. Section A.2 uses perturbative methods to provide another perspective of
the Hopf-Cole transformation.

A.1 From the (signed) eikonal equation to a (jump) screened
Laplace equation

We start with the signed viscous eikonal equation

VtAu(x) - signg (x) (IVu(x)*-1) = 0 x¢Q,
u(x) = 0 xeQ, (A1)
S—Z(x) =1 xeQ

where sign (x) : R? — {-1,1} is a sign function associated with the (d — 1)-dimensional
oriented surface Q, defined to be a piecewise constant function whose boundary conditions
satisfy

signg, (li_r)%x + sn(x)) = }E)% signg (x +sn(x)) =+1 x € Q (A.2)

where n denotes the outward-facing normal direction to Q.
We consider the following function of u(x), which we refer to as the signed Hopf-Cole
transformation,

w(x) = signg, (x) exp (— signg (x)u(x) /x/Z) . (A3)

Equation A.3 may also be considered a signed extension of Varadhan’s formula [Varadhan 1967].
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We observe that for all points x € R? not on the locus of points where sign, changes sign, we
have that 0 < |w(x)| < 1forall t > 0. The inverse transformation corresponding to Equation A.3
is

u(x) = —signg (x)Vtlog (signg (x)w(x)) . (A.4)

If Q is simple and closed, then Q bounds a simply-connected region A, and the only reasonable
definition of sign, (x) on {x | x ¢ Q} is such that

-1 x€A

signg (x) = {+1 xeRIVA~
Since Q separates the domain R, the solution of the viscous signed eikonal equation in Equa-
tion A.1 is equivalent to the union of the solutions of two independent viscous signed eikonal
equations: one defined on A with boundary Q (the “interior”), and one defined on R? \ A with
boundary —Q (the “exterior”), where —Q denotes Q with opposite orientation.

Letut : RY \71 — R denote the solution to the exterior problem, and u™ : A — R the solution
to the interior problem (and similarly for w*(x)). Using the signed Hopf-Cole transformation,
we obtain the following expressions:

\Y%
Vu*(x) = 1\/Z—W
w

() = 3VE 2 - ”VV;"Z).

w

Applying these to the viscous signed eikonal equation in Equation A.1, we obtain a screened
Laplace equation in w(x) for both the interior and exterior regions:

1
Aw*(x) — ?wi (x) =0. (A.5)
The Dirichlet boundary conditions of w*(x) and w™(x) are

w*(x) = signg (x) exp (— signg (x)u™ (x)/\/f) x€Q

= w*(x) = signg(x) since u*(x) = 0 for x € Q.

The Neumann boundary conditions for both w*(x) and w™(x) are identical w.r.t. the normals of

Q:
owr(x) 1

on(x) _ﬁ'
Putting together the solutions w*(x) and w™(x), we obtain the following jump screened Laplace
equation for w(x):

Aw(x) — %w(x) =0 x¢Q,
whx) = signi(x) xeQ, (A.6)
P (x) = —% x € Q.
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where w*(x) := w(x*) and sign (x) := signg (x*) (Where x* := lim,_,o x + sn(x)).

When Q is open, the sign function signg(x) is no longer easily defined away from Q.
However, we always know the Dirichlet boundary conditions of sign, (Equation A.2), which from
Equation A.5 we know will always equal those of w(x). Though we have not yet introduced any
constraints between sign, (x) and sign ,(x) at points x ¢ Q, we will assume that sign,, = sign,,
— meaning signg (x) is no longer independent of w(x) and u(x), but coupled to them — and
re-write the signed Hopf-Cole transformation in Equation A.3 as

w(x) = sign,, (x) exp (— sign,, (x)u(x)/\/f) (A.7)
with inverse
u(x) = - sign,, (x) VE log (sign, (x)w(x)) = - sign,, (x) V log |w(x)].

(Note that defining the signed Hopf-Cole transformation basically forces us to assume signg =
sign,,, otherwise the inverse transformation may not be well-defined.) Using the updated signed
Hopf-Cole transformation, we obtain the following expressions:

Vu = —Vt (log |w|V sign,, +sign,, V log |w|)
Au = -Vt (2V log |w| - sign,, +log |w|A sign,, +sign,, Alog |w]) .

We see that these derivatives are only well-defined for points x which satisfy the following two
conditions — though later we will see that they are equivalent:

1. Though derivatives involving |w| are only well-defined where w # 0, above we established
by Equation A.3 that |[w| > 0 always. Hence for any x away from Q (more precisely, x
which admit open neighborhoods with empty intersection with Q), we may safely take
the gradient of |w(x)]|.

2. Second, we have that Vsign  (x) = 0 and Asign  (x) for x ¢ ow, where ow denotes the
locus of points where w changes sign.
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For all x satisfying these two conditions,

Vu(x) = -Vt sign,, (x)Vlog [w(x)|

= —Vtsign,, (x)w(x) Vw—(x)

— " w()?

[w(x)]
= —ViVw(x)/|w(x)]
e = - GG — ) i Tu)
[w(x)?
(AW w<x>||w<x>||2)
\/Z(|w(x)| lw(x)]?

= VtAu(x) — sign,, (x) (||Vu(x)||2 -1)=0
(B ) (IS )

W~ WP WP
| M) w [Ty (Vw2 |
= ‘“‘gnw(")(| @l WP )‘(t W) ‘1)‘0
) VWl [VwE@E
= - tsien, (")| G+ S W) SR — e 1= 0
|w(x)]
Aw(x)
= —tsign,, (x)| ] +1=
B Aw(x) =0
- tw(x) +1=

= Aw(x) — %w(x) =0.

We arrive at the same screened Laplace equation for w(x) as before, from which we conclude
that the two conditions on x are equivalent, because the locus of points where w changes sign
exactly corresponds to Q: the sign cannot change anywhere else due to the properties of the
screened Laplace operator. In summary, this screened Laplace equation is valid for all x ¢ Q.

We already established the Dirichlet boundary conditions of w(x), so all that remains is to
establish the Neumann boundary conditions:

\/_

1=Vu(x) - n——m( w(x) - n), x e

= 2 (x) = —— w(x)| =1

which are the same Neumann boundary conditions we obtained in Equation A.6 when we
assumed Q was closed. In summary, we established the equivalence of the signed viscous
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eikonal equation (Equation A.1) with the jump screened Laplace equation in Equation A.6, for
both closed and open Q.

Remarks:

* If we did not assume sign, = sign,,, then we would not have been able to replace
sign,, (x)w(x) with |w(x)| in the inverse signed Hopf-Cole transformation. It is this
assumption that (1) guarantees that the signed Hopf-Cole transformation can be inverted,
since it guarantees that the argument of log(signg (x)w(x)) — log [w(x)| is positive; and
(2) allows us to avoid the possibility of Dirac deltas when differentiating u or w.

* We have that sign,, = sign,, which can be seen either by inspecting the signed Hopf-Cole
transformation (Equation A.3), or by following the reasoning in the above bulletpoint
and observing that sign,, determines the sign of the solution u(x) to the viscous signed
eikonal equation in Equation A.1. Hence we can also express the updated signed Hopf-Cole
transformation (Equation A.7) as

w(x) = sign, (x) exp(~[u(x)|/ VD).

We also see that since sign,, = sign,, is determined by a screened Poisson equation, that
sign,, is different than, for example, the sign given by winding numbers (for ¢t < o0).

A.2 Analysis of the screened Laplace equation as a boundary-
layer problem

This time we start from a screened Laplace equation with spatially-varying screening coeflicient,
2 Aw(x) — a?(x)w(x) = 0.

Equations of this form have been studied as time-independent Schrédinger equations, and we
paraphrase here the derivation given in an example in Bender and Orszag [1999, §10].

Dissipative and dispersive phenomena are both characterized by exponential behavior (the
exponent is real for dissipation/diffusion, and imaginary for dispersion.) Thus for differential
equations exhibiting dissipative and/or dispersive phenomena, we can try seeking an approxi-
mate solution of the form

w(x) ~ A(x) exp (S(x)/9), §—o0*

which is called the WKB approximation. (When the phase S(x) is real, there is a boundary layer
of thickness §; when S(x) is imaginary, there is a region of oscillation characterized by waves of
wavelength of order §.) Making more explicit the dependencies of the amplitude and phase on 6,
and using series expansions of the amplitude A(x) and phase S(x) in powers of §, yields the
more useful power series

, §— 0.

w(x) ~ exp (é i O"Sp(x)
n=0
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Substituting this WKB approximation, whose derivatives are

Vw(x) ~ (13 Z 5”VSn(x)) exp (% Z 5"Sn(x)) , §—0

n=0

[ (o] 2 (o) (o]
1 1 1
Aw(x) ~ (5 > 5”Vsn(x)) += 3 8"AS,(x) | exp (S > 5”Sn(x)), 50
n=0 n=0 n=0

we obtain

(o] 2 (o]
¢ (% Z 5nvsn(x)) + é Z §"AS,(x)| — a*(x) = 0
n=0

n=0

2
82 - n 82 S n
=5 (Z_;a VSn(x)) s Z_;a AS,(x) = a?(x).

The largest term on the Lh.s. is the first term f;—i IVSo(x)||? of the leftmost sum (all further terms
are multiplied by more powers of the small scale parameter §.) Assuming a(x) # 0, by dominant
balance this term must have the same order of magnitude as a?(x) on the right side; hence we
determine that &(¢) is proportional to ¢. Taking § = ¢ yields

[ee] 2 o
(Z E”VSn(x)) + Z e"AS, (x) = a?(x)
n=0 n=0

which yields a recursive formula for the S,:

IVSo(x)II? = a*(x)

n
ASy1(x) + ) VS;(x) - VS, j(x) =0, n>1
j=0
which is obtained by equating powers of ¢. (It is possible that § ~ ce for some constant of
proportionality c, but in general in asymptotic analysis one is only interested in the order of
magnitude of the boundary-layer thickness.)

We observe that the first equation is an eikonal equation with spatially-varying wave velocity
(whose boundary conditions are determined by the boundary conditions of the original screened
Poisson equation). In fact, our analysis tells us that the leading term of w(x) in the small-¢
regime is the solution to an eikonal equation — equivalent to what is implied by Hopf-Cole
transformation and Varadhan’s formula, which reflect the special case of @ = +1.

The first few equations in the sequence are

IVSo(x) 1> = &*(x)
2VS, (X) : VS()(X) + AS()(X') =0
IVS1 (x)]|? + 2VS2(x) - VS(x) + AS;(x) =0
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If ¢ = 1 is constant, then in 1D, at least, all terms beyond the leading one are zero (that is,
Sn = 0 for n > 1), meaning the phenomena is accurately described by the leading eikonal term.
Spatially-varying a(x) corresponds to distance induced by a metric derived from the coefficients
[Varadhan 1967].

Making these types of approximations is common in optics; for example, using only the
leading term corresponds to making a geometric or ray optics assumption, from which the
eikonal equation is derived in what is called the high-frequency limit. For more theory connecting
viscosity solutions, Hamilton-Jacobi equations, and more general reaction-diffusion equations,
see [Freidlin 1986; Fleming and Souganidis 1986; Fedotov 1999].

Phase fields. The boundary-layer perspective also yields a connection between viscous eikonal
equations and phase fields, also used by Lipman [2021]. In particular, consider the optimization

minyor [y, VIR + 3 ()] - 1)°
s.t. v(x) =0 x € oM

whose objective is a variant of the Modica-Mortola functional often used in image processing.
Expanding the first term of the objective (and using angle brackets to denote the L? inner
product) yields

1 1
. EIVVOIF — 5
1
-z (=(Av, )y + (- Vv, v)am) (Stokes’ theorem)

where n denotes the unit normal to oM. To derive the necessary conditions for optimality, we
group the interior and boundary terms of the objective, and differentiate the expressions w.r.t. v
and set to 0, to obtain

%Av(x) —v(x) —sign (x) xeM
v(x) 0 x € oM
%(x) = qu x € oM

where p € R is a Lagrange multiplier. If the domain M is a closed region where sign (x) = 1,
then applying the change of variable w(x) = 1 — v(x) yields the jump screened Laplace equation
in Equation A.6 where sign,,(x) = 1. Where sign (x) = —1, applying the change of variable
w(x) = —1 — v(x) yields Equation A.6, with the same Neumann boundary conditions.
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